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ABSTRACT  

 
Assuming the underlying assets follow a Variance-Gamma (VG) process, we consider the problem of 
estimating gradients of a European call option by Monte Carlo simulation methods.  In this paper, we 
compare indirect methods (finite difference techniques such as forward differences) and two direct 
methods: infinitesimal perturbation analysis (IPA) and likelihood ratio (LR) method.  We conduct 
simulation experiments to evaluate the efficiency of different estimators and discuss the advantage and 
disadvantage of each method. 
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INTRODUCTION  
 

radients estimates have been useful in hedging risks in markets in the finance community.  Thus 
many techniques of calculation of gradients including direct methods and indirect methods have 
been broadly developed.  Many studies have been obtained to study the gradients of estimation 

under a geometric Brownian motion (GBM) model.  However, the GBM model has some imperfections 
in illustrating the statistical properties of empirical results of market prices.  In this paper, we assume 
stock prices follow a Variance-Gamma (VG) process and develop gradient estimates of a European call 
option under this assumption.  The Variance Gamma process is one of the Levy processes, which are 
determined by a random time change.  It is a pure-jump process with finite moments and no diffusion 
component.  The VG process has been studied in a vast literature and empirical evidence shows that it 
can yield much better fits to stock prices than the geometric Brownian motion process.  
 
In this paper, we first price a European call option and then turn to gradient estimation to calculate the 
Greeks by indirect method: forward difference (FD), the direct methods of IPA and LR. Finally, an 
analysis of the strengths and weakness of each method is provided.  The remaining of this paper is 
organized as follows.  A literature review of gradient estimation techniques and Variance Gamma 
processes are first provided.  Then, the introduction of Greeks which is also called the sensitivities of 
options is shown.  In the third part, details of VG processes, as well as gradient estimation techniques 
including forward direct method (FD), IPA and LR are provided.  Furthermore, gradient estimators of 
Greeks of options under the VG model are shown.  Finally, a numerical experiment of estimating Greeks 
of a European call option is conducted using estimators we calculated.  In the last section, analysis of 
results from the numerical experiment is provided. 
 
LITERATURE REVIEW 
 
A Variance Gamma (VG) Process was introduced to the finance community as a model for log-price 
returns and option pricing by Madan and Seneta (1990).  Madan and Milne (1991) consider equilibrium 
option pricing for a symmetric variance gamma process in a representative agent model; while Madan, 
Carr and Chang (1998) develop the method of pricing options by a Variance Gamma process.  Fu (2007) 
gives a general introduction to the VG process in the context of stochastic (Monte Carlo) simulations and 
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shows how to price and simulate stock prices.  Cao and Fu (2010) estimate Greeks of Mountain Range 
options with respect to a Variance Gamma process.  
 
The Greeks in the definition of finance community are the quantities representing the sensitivities of the 
price of derivatives such as options to a change in underlying parameters on which the value of an 
instrument or portfolio of financial instruments is dependent.  Each Greek letter measures the sensitivity 
of option prices to stock prices, thus it has been broadly applied in hedging risks.  For example, “Delta” 
is necessary for delta hedging, see Cao and Guo (2011-3) employ deltas under a Black-Scholes model to 
estimate hedging profits.  Cao and Guo (2001-2) analyze hedging profits from delta hedging under a VG 
model and a Black-Scholes model; while Cao and Guo (2011-4) compare results from delta hedging of a 
European call option w.r.t. a VG process and a geometric Brownian motion (GBM), respectively, using 
deltas by IPA method.  The Greeks can also be employed to conduct other hedging strategies such as 
Gamma hedging etc., of which are introduced in Hull (2003).   
 
Gradient estimation technique is a widely used technique to calculate the Greeks.  It was first applied to 
option pricing using infinitesimal perturbation analysis (IPA) for both European and American options by 
Fu and Hu (1995).  Then, both IPA and LR methods are applied in Broadie and Glasserman (1996) to 
European and Asian option with respect to (w.r.t.) Geometric Brownian motion; see also Glasserman 
(2004) reviews various Monte Carlo Methods for financial engineering.  Fu (2007) reviews various 
methods of gradient estimation in stochastic simulation, including both direct and indirect methods; see 
also Fu (2008) reviews techniques and applications to derivative securities.  Cao and Guo (2011-1) 
employ the estimation techniques to estimate gradients of a European call option following a VG model. 
 
VARIANCE-GAMMA PROCESS  
 
The Variance Gamma Process is a Levy process, which is of independent and stationary increments.  
There are two ways to define a VG process: 
 
First, a VG process can be defined as Gamma-time-changed Brownian motion with the subordinator 
being a gamma process, say GVG.  Let 𝑊𝑡denote the standard Brownian motion, 𝐵𝑡

(𝜇,𝑑) = 𝜇𝑡 + 𝜎𝑊𝑡 
denote the Brownian motion with constant drift rate 𝜇 and volatility𝜎, 𝛾𝑡

(𝑣) be the gamma process with 
drift 𝜇 = 1 and variance parameter 𝑣.  The representation of the VG process is: 

 
𝑋𝑡 = 𝐵

𝛾𝑡
(𝑣)

(𝜃,𝑑) = 𝜃𝛾𝑡
(𝑣) +  𝜎𝑊𝛾𝑡

(𝑣) .                          (1) 

 
Second, the VG process is the difference of two gamma processes, say DVG.  Let 𝛾𝑡

(𝜇,𝑣)be the gamma 
process with drift parameter 𝜇 and variance parameter 𝑣, the representation of the VG process as 
difference of gamma process is: 

 
𝑋𝑡 = 𝛾𝑡

(𝜇+,𝑣+) − 𝛾𝑡
(𝜇−,𝑣−),                 (2) 

where 𝜇± = (�𝜃2 + 2𝑑2

𝑣
± 𝜃)/2, and 𝑣± = 𝜇±

2𝑣. 
 
Under the risk-neutral measure, with no dividends and constant risk-free interest rate 𝑑, the stock price is 
given by 𝑆𝑡 = 𝑆0 exp�(𝛾 + 𝑤)𝑡 + 𝑋𝑡�, where 𝜔 = ln �1 − 𝜃𝑣 − 𝑑2𝑣

2
� /𝑣 is the parameter that makes 

the discounted asset price a martingale.  
 

http://en.wikipedia.org/wiki/Derivative_(finance)
http://en.wikipedia.org/wiki/Option_(finance)
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Portfolio_(finance)
http://en.wikipedia.org/wiki/Financial_instrument
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The density function of the log-price 𝑍 = ln (𝑆𝑡
𝑆0

) as proposed by Madan and Seneta (1990) is: 
 

ℎ(𝑧) =
2exp�𝜃𝑥𝜎2�

𝑣
𝑡
𝑣√2𝜋𝑑Γ�𝑡𝑣�

� 𝑥2
2𝜎2
𝑣 +𝜃2

�

𝑡
2𝑣−

1
4
𝐾�𝑡𝑣−

1
2�

( 1
𝑑2
�𝑥2 �2 𝑑2

𝑣
+ 𝜃2�)                               (3) 

 
where 𝐾 is the modified Bessel function of 2nd kind, and 𝑥 = 𝑧 − 𝑑𝑡 − 𝑡

𝑣
ln �1 − 𝜃𝑣 − 𝑑2𝑣

2
�. 

 
GREEKS 
 
Greeks are quantities representing sensitivities of derivatives, such as options, see Hull (2003).  Each 
Greek letter measures a different dimension to the risk in an option position and the aim of a trader is to 
manage the Greeks so that all risks are acceptable.  In this paper, we study the Greeks such as Delta, Rho 
and Theta defined in the following:  
 
Delta: ∆ is defined as the rate of change of the option price w.r.t. the underlying asset price.  It is the 
slope of the curve that relates the option price to the underlying asset price.  In general, ∆= 𝜕𝑉

𝜕𝑆
. 

 
Vega: 𝑣 is the rate of change of the value of the portfolio of option w.r.t. the volatility of the underlying 
asset price.  It measures the sensitivity of the value of a portfolio to the volatility, i.e., 

 𝑣 = 𝜕𝑉
𝜕𝑑

 . 
 
Rho: 𝜌 is the rate of change of the value of the portfolio of option w.r.t. the interest rate.  It measures 
the sensitivity of the value of a portfolio to interest rates.  It is defined as: 𝜕𝑉

𝜕𝑟
 . 

 
Theta: 𝜃 is the rate of change of the value of the portfolio of option w.r.t. the passage of time with all else 
remaining the same.  It measures the sensitivity of the value to the passage of time.  It is defined as: 
𝜃 = 𝜕𝑉

𝜕𝑡
 

 
GRADIENT ESTIMATION TECHNIQUE 
 
In this paper, we focus on calculating gradient estimates of the price of a European call option depending 
on various parameters of a VG model.  We then calculate the derivatives of the price with respect to 
these parameters separately.  
 
We begin with 𝐽(𝜉), the objective function which depends on the parameter𝜉, and calculate 𝑑𝐽(𝜉)

𝑑𝜉
. 

 
Suppose the objective function is an expectation of the sample performance measure 𝐿, that is:  
 
𝐽(𝜉) = 𝐸[𝐿(𝜉)] = 𝐸[𝐿(𝑋; 𝜉)]             (4) 
 
Where 𝑋 is dependent on 𝜉.  By the law of the unconscious statistician, the expectation can be written as: 
 
𝐸[𝐿(𝑋)] = ∫ 𝑦𝑑𝐹𝐿 (𝑦) = ∫𝐿(𝑥)𝑑 𝐹𝑋(𝑥),             (5) 
 
where 𝐹𝐿 is the distribution of 𝐿 and 𝐹𝑋 is the distribution of input random variables 𝑋. 
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Indirect Methods 
 
The indirect method of estimating a gradient at 𝜉 is simply to use finite difference, i.e., perturbing the 
value of each component of 𝜉 separately while holding all the other components still. 
 
The one-sided forward difference gradient estimator in the i-th direction is: 𝐽(𝜉+𝑐𝑖𝑒𝑖)−𝐽(𝜉)

𝑐𝑖
, where 𝑐𝑖  is the 

scalar perturbation in the i-th direction and 𝑒𝑖 is the unit vector in the i-th direction. 
 
Direct Methods (IPA and LR) 
 
IPA estimates require the integrability condition which is easily satisfied when the performance function 
is continuous with respect to the given parameter.  Assume we can interchange the expectation and 
differentiation, the IPA estimate is: 
 
𝑑𝐸[𝐿(𝑋)]

𝑑𝜉
= 𝐸 �𝑑𝐿(𝑋)

𝑑𝜉
� = ∫ 𝑑𝐿

𝑑𝑋
1
0

𝑑𝑋(𝜉)
𝑑𝜉

𝑑𝑢,                   (6) 
 
and the estimator is: 
 
𝑑𝐿
𝑑𝑋

𝑑𝑋(𝜉)
𝑑𝜉

                    (7) 
 
From the Lebesgue dominated convergence theorem, the condition of uniform integrability of 𝑑𝐿

𝑑𝑋
𝑑𝑋(𝜉)
𝑑𝜉

  
must be satisfied to make the interchangeability. 
 
For LR, the probability density function 𝑓 of 𝑋 is differentiable. The Likelihood Ratio method is: 
 
𝑑𝐸[𝐿(𝑋)]

𝑑𝜉
= � 𝐿(𝑥)

𝑑𝑓(𝑥, 𝜉)
𝑑𝜉

𝑑𝑥 =
+∞

−∞
� 𝐿(𝑥)

𝑑𝑑𝑑𝑓(𝑥, 𝜉)
𝑑𝜉

𝑓(𝑥)𝑑𝑥
+∞

−∞
 

 
 
and the estimator is 
 
𝐿(𝑥) 𝑑𝑙𝑛𝑓(𝑥,𝜉)

𝑑𝜉
𝑓(𝑥), where  𝑑𝑙𝑛𝑓(𝑥,𝜉)

𝑑𝜉
  is the score function.  From the Lebesgue dominated convergence  

 
theorem, the condition of uniform integrability of  𝐿(𝑥) 𝑑𝑙𝑛𝑓(𝑥,𝜉)

𝑑𝜉
𝑓(𝑥) must be satisfied to make the 

interchangeability.  We employ indirect methods (FD) and direct methods (IPA and LR) to calculate the 
gradient estimation in the following paper. 
 
GRADIENTS OF A EUROPEAN CALL OPTION 
 
Call option gives the buyer the right, not the obligation to buy certain amount of financial instrument 
from the seller at a certain time for a certain price.  The payoff function of the European call option with 
expiring time 𝑇, strike price 𝐾 and risk free interest rate 𝑑 is：𝑉𝑇 = 𝑒−𝑟𝑇(𝑆𝑇 − 𝐾)+, where 𝑆𝑇 =
𝑆0exp ((𝑑 + 𝜔)𝑇 + 𝑋𝑇), and 𝑋𝑇 follows the VG process.  We have 2 different ways to represent the 
VG process 𝑋𝑇 as in Equation (2) and Equation (3).  We estimate the Greeks in these two ways. 
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IPA for a European Call Option 
 
The gradient w.r.t 𝑇 does not satisfy the condition of interchangeability, which means IPA method can 
not be applied to this gradient.  The estimators for other gradients of a European call option for IPA 
method are as follows: 
 
Table 1:  IPA Estimators for European Call options 
 

Greek IPA Estimators 

Delta  𝑑𝑉𝑇
𝑑𝑆0

= 𝑒−𝑟𝑟𝐼{𝑆𝑇>𝑘}
𝑑𝑆𝑇
𝑑𝑆0

 

 
Rho 𝑑𝑉𝑇

𝑑𝑑
= −𝑇𝑒−𝑟𝑟(𝑆𝑇 − 𝐾)+ + 𝑒−𝑟𝑟𝐼{𝑆𝑇>𝑘}

𝑑𝑆𝑇
𝑑𝑑

. 
 

Vega 𝑑𝑉𝑇
𝑑𝑑

= 𝑒−𝑟𝑟𝐼{𝑆𝑇>𝑘}
𝑑𝑆𝑇
𝑑𝑑

. 
 

Theta  𝑑𝑉𝑇
𝑑𝑑

= −𝑟𝑒−𝑟𝑟(𝑆𝑇 − 𝐾)+ + 𝑒−𝑟𝑟𝐼{𝑆𝑇>𝑘}
𝑑𝑆𝑇
𝑑𝑑

 

Gradient w.r.t. 𝜃  𝑑𝑉𝑇
𝑑𝑑

= 𝑒−𝑟𝑟𝐼{𝑆𝑇>𝑘}
𝑑𝑆𝑇
𝑑𝑑

 

Notes: This table shows the IPA estimates for European call options by assuming the stock price follows a Variance-Gamma process.  The 
Variance-Gamma process could be a GVG or DVG process.  Delta denotes the gradient with respect to the spot price 𝑆0.  Rho denotes the 
gradient with respect to the risk-free interest rate 𝑑.  Vega denotes the gradient with respect to 𝜎.  Theta denotes the gradient with respect to 
the maturity time𝑇.  
 
LR for a European Call Option 
 
Since the density doesn't contain 𝑆0  or 𝑑, we could not use LR to estimate vega and rho.  The gradient 
w.r.t. 𝜃 does not satisfy the condition of interchangeability, which means LR method can not be applied 
to this gradient.  The other gradients could be calculated as follows: 

 
Table 2:  LR Estimators for European Call options 

 
Greek LR Estimators 

Gradient w.r.t. 𝜎 𝑑 𝐸[𝑉𝑇]
𝑑𝑑

= � 𝑒−𝑟𝑟(𝑆0𝑒𝑍 − 𝐾)+
∞

0

𝑑𝑑𝑑ℎ(𝑧)
𝑑𝑑

ℎ(𝑧)𝑑𝑑 

 
Theta (Gradient w.r.t. 𝑇) 𝑑 𝐸[𝑉𝑇]

𝑑𝑑
= � 𝑒−𝑟𝑟(𝑆0𝑒𝑍 − 𝐾)+

∞

0
(−𝑟 +

𝑑𝑑𝑑ℎ(𝑧)
𝑑𝑑

)ℎ(𝑧)𝑑𝑑 

 
Notes: This table shows the LR estimates for European call options by assuming the stock price follows a Variance-Gamma process.  The 
Variance-Gamma process could be a GVG or DVG process.  𝑇 denotes the maturity time.  
 
Numerical Experiment 
 
Using the formulas of estimators above, we apply Monte Carlo to do the estimation from 10000 sample 
paths.  With 𝐾 = 10, 𝑑 − 𝛿 = 0.057, 𝑣 = 0.2686, 𝜃 = 0.1436,𝜎 = 0.1213 and 𝑇 = 0.2. We get the 
numerical results in the table below:  
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Table 3:  Numeral Results of Gradients 
 

GVG Delta Rho Vega 𝒅𝑽𝑻
𝒅𝒅

 
𝒅𝑽𝑻
𝒅𝒅

 

FD 0.4746 0.9010 1.3703 0.6443 0.4713 

StdErr 0.0052 0.0097 0.0349 0.6559 0.0212 

IPA 0.4707 0.8862 1.3578  0.4621 

StdErr 0.0052 0.0098 0.0349  0.0211 

LR   1.7603 0.7012  

StdErr   0.2036 0.0236  

DVG      
FD 0.4794 0.9100 1.3883 0.5942 0.5022 

StdErr 0.0052 0.0097 0.0320 0.7987 0.0171 

IPA 0.4746 0.8925 1.1200  0.5512 

StdErr 0.0052 0.0098 0.0013  0.0120 

LR   1.3651 0.6792  

StdErr   0.1688 0.0317  
Notes: This table shows the mean values and standard errors of results of all Greeks for European call options by assuming the stock price 
follows a Variance-Gamma process.  The Variance-Gamma process could be a GVG or DVG process.  GVG is the Gamma-time-changed 
Brownian motion.  DVG is the difference of two Gamma processes.  We apply the results of estimating Greeks by three methods FD, IPA and 
LR.  FD denotes the forward difference method, LR denotes the LR method.  StdErr denotes the standard error of the simulation results.  
Delta denotes the gradient with respect to the spot price

0S .  Rho denotes the gradient with respect to the risk-free interest rate 𝑑 .  Vega 

denotes the gradient with respect to 𝜎.  Panel A shows the results under a GVG process; Panel B shows the results under a DVG process. 
 
CONCLUSIONS 
 
Assuming stock prices follow a Variance-Gamma process, we employ several methods in the gradient 
estimation techniques to estimate the Greeks of a European call option.  The gradient estimators of 
gradients through three methods including the finite difference, the infinitesimal perturbation analysis 
(IPA) method and the likelihood ratio (LR) method are provided in Table 1 and Table 2.  A numerical 
experiment is conducted.  From the results in the table 3, we could draw the following conclusions.  FD 
method is closest to the true value of gradients, but may get large standard error.  Moreover, compare to 
IPA and LR methods, FD method is more time-consuming, since it requires running the simulation on 
one sample path twice. But estimators of IPA and LR of some gradients do not satisfy the condition of 
changing integral, i.e., the Lebesgue dominated theorem.  Therefore, these two methods have some 
limitations in calculating some of the gradients.  Furthermore, from the results in table 3, we could 
conclude that IPA method is more accurate than LR method. 
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