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ABSTRACT 
 
Financial institutions have always been exposed to operational risk – the risk of loss, resulting from 
inadequate or failed internal processes and information systems, from misconduct by people or from 
unforeseen external events. Both banking supervision authorities and banking institutions have recently 
showed their interest in operational risk measurement and management techniques. This newfound 
prominence is reflected in the Basel II capital accord, including a formal capital charge against 
operational risk, based on a spectrum of three increasingly sophisticated measurement approaches. The 
objective of this paper is to increase the level of understanding of operational risk within the financial 
system, by presenting a review of the literature on the modelling techniques proposed for approach such 
risk in financial institutions. We perform a comprehensive evaluation of commonly used methods, with a 
view to compare the performance of different estimators and quantitative estimation methods, for 
implementation of operational risk measurement. We find that there is currently high variability in the 
quality and quantity of disclosure on operational risk so, as our conclusion, we try to offer instructive and 
tractable recommendations for a more effective operational risk measurement. 
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INTRODUCTION  
 

perational risk has always existed as one of the core risks in the financial industry. Although there 
is no agreed upon universal definition of operational risk, the Risk Management Group (RMG) of 
the Basel Committee have recently developed a standardized definition of operational risk. It is 

commonly defined as the risk of loss resulting from inadequate or failed internal processes, people, and 
systems, or from external events (e.g. unforeseen catastrophes). This definition includes legal risk, but 
excludes strategic and reputational risk (Basel Committee, 2004, 2005 and 2006; Coleman, 1999). While 
firms in general are beginning to more explicitly discuss the importance of operational risk, the new Basel 
Capital Accord explicitly requires the financial services industry to manage that risk. Particularly 
Hiwatashi (2002) argues that banks have already begun to consider operational risk because of advances 
in information technology, deregulation, and increased international competition. The growth of e-
commerce, changes in banks’ risks management or the use of more highly automated technology, have 
led, regulators and the banking industry to recognize the importance of operational risk in shaping the risk 
profiles of financial institutions. In this paper we discuss operational risk and its applications to financial 
services firms.  
 
Our main focus is a review of the literature and the issues in this critical area in international corporate 
finance. It is somewhat ironic that while the major focus of regulators and institutions in the financial 
services sector over recent years has been on developing models for measuring and managing credit risk, 
most of the large losses in financial institutions over this time have been sourced to operational risk. 
Large operational losses as a result of accounting scandals, insider fraud, and rogue trading, to name just a 
few, have received increasing attention from the press, the public, and from policymakers. Considering 
the size of these events and their unsettling impact on the financial community, as well as the increase in 
the sophistication and complexity of banking practices, an effective operational risk management and 
measurement system, becomes increasingly necessary. In the banking world, large financial institutions 

O 
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have experienced more than 100 operational loss events in excess of $100 million each over the past 
decade. Rosengren (2002) reports examples of operational risk that have imposed significant costs on 
firms. First, damage to physical assets and disruption of the business are important considerations, 
including the $27 billion publicly announced insurance exposure to the 9/11 attack on the World Trade 
Center. In the same event it is assumed that the loss of Bank of New York totalled $140 million. Second, 
internal fraud and criminal behaviour also impose costs, such as the losses to Allied Irish banks of $690 
million in rogue trading.

 
Third, losses that result from dealings with clients, products, and businesses must 

also be considered. For examples, he cites the $2 billion settlement of the class action lawsuit by 
Prudential Insurance caused by its improper sales practices and the $400 million paid by Providian 
Financial for its unfair sales and collection practices and the $484 million settlement due to misleading 
sales practices at Household Finance. More the $9 billion loss of Banco National due to credit fraud in 
1995, the $2.6 billion loss of Sumimoto Corporation due to unauthorized trading activity in 1996, the $1.7 
billion loss and subsequent bankruptcy of Orange County due to unauthorized trading activity in 1998 and 
the $1.2 billion trading loss by Nick Leeson causing the collapse of Barings Bank in 1995.  
 
A survey of the Basel Committee of 89 banks and one year of data (2001) shows 47000 loss events 
(relating to operational risk in general) totalling €7.8 billion. In their 2001 Annual Reports, Deutsche 
Bank and JPMorgan Chase disclosed economic capital of €2.5 billion and $6.8 billion for operational 
risk, respectively. The loss distribution of operational risk is heavy-tailed, i.e. there is a higher chance of 
an extreme loss event (with high loss severity) than the asymptotic tail behaviour of standard limit 
distributions would suggest. The tails of the distribution are of particular interest due to their potentially 
devastating effects, yet, they are also stochastically hard to get by. The paper is organized as follows. In 
Section 2 we describe Basel II Background. In Section 3 we provide a short overview of the actual Basel 
II operational risk (OR) approaches. In the next session reviewing the existing literature we describe some 
of current practices of ORM (Operational Risk Management), including an analysis of quantitative 
measurement approaches. In the lasts section, we summarize our findings. 
 
LITERATURE REVIEW 
 
Basel II 
 
After more than seven years in the making, the New Basel Capital Accord on global rules and standards 
of operation for internationally active banks has finally taken effect. The latest revision of the Basel 
Accord represents the second round of regulatory changes since the original Basel Accord of 1988. In a 
move away from rigid controls, the revised regulatory framework is geared towards achieving a greater 
sensitivity to risk (both in supervisory authorities as well as in supervised institutions), and to achieve a 
better link, between the regulatory capital that banks need to retain and the risks that are part of a bank’s 
business. At the end of 2006, the Basel Committee on Banking Supervision issued the final draft 
implementation guidelines for new international capital adequacy rules (International Convergence of 
Capital Measurement and Capital Standards or short “Basel II”) to enhance financial stability through 
the convergence of supervisory regulations governing bank capital. As for credit risk, the Basel 
Committee does not believe in a “one-size-fits-all” approach to capital adequacy and proposes three 
distinct options for the calculation of the capital charge for operational risk. The Basel Committee was 
established by the central-bank Governors of the Group of Ten countries at the end of 1974.  
 
The Committee does not possess any formal supranational supervisory authority, rather, it formulates 
broad supervisory standards and guidelines and recommends statements of best practice in the expectation 
that individual authorities will take steps to implement them through detailed arrangements - statutory or 
otherwise - which are best suited to their own national systems. In this way, the Committee encourages 
convergence towards common approaches and common standards without attempting detailed 
harmonisation of member countries' supervisory techniques. After the third and final round of 
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consultations on operational risk, from October 2002 to May 2003, the Operational Risk Subgroup 
(AIGOR) of the Basel Committee Accord Implementation Group establishes various schemes for 
calculating the operational risk charge in a continuum of increasing sophistication and risk sensitivity - 
Basic Indicator Approach (BIA), Standardized Approach (TSA), and Advanced Measurement 
Approaches (AMA). A standardised classification matrix of operational risk into eight Business Lines 
(BLs) and seven Event Types (ETs) has also been defined, in order to encourage greater consistency of 
loss data collection within and between banks. In other words Basel II capital adequacy approach move 
from a crude Basic Approach, based on a fixed percentage of Gross Income - the indicator selected by the 
Committee as a proxy of banks’ operational risk exposure - passing through an intermediate Standardised 
Approach (SA), which extends the Basic method by decomposing banks’ activities and, hence, the capital 
charge computation, into eight underlying business lines, to the most sophisticated approaches, the 
Advanced Measurement Approaches (AMA), based on the adoption of banks’ internal models. BIA 
requires banks to provision a fixed percentage (15%) of their average gross income over the previous 
three years for operational risk losses, whereas SA sets regulatory capital to at least the three year average 
of the summation of different regulatory capital charges (as a percentages of gross income) across BLs in 
each year.  
 
The most sophisticated AMA approach, allows banks to use their internal loss experience, supplemented 
with other elements such as the experience of other banks, scenario analysis, and factors reflecting the 
business environment and the quality of the bank’s internal controls, as the basis for estimating their 
operational risk capital requirements. Banks were allowed to choose a measurement approach appropriate 
to the nature of banking activity, organizational structure, and business environment subject to the 
discretion of national banking supervisors, (supervisory review - Pillar 2 of Basel II). In the U.S. the 
implementation of New Basel Capital Accord underscores the particular role of operational risk as part of 
the new capital rules. On February 28, 2007, the federal bank and thrift regulatory agencies published the 
Proposed Supervisory Guidance for Internal Ratings-based Systems for Credit Risk, Advanced 
Measurement Approaches for Operational Risk, and the Supervisory Review Process (Pillar 2) Related to 
Basel II Implementation (based on a previous advanced notices on proposed rule-making in 2003 and 
2006).  
 
These supervisory implementation guidelines permit qualifying banking organizations to adopt Advanced 
Measurement Approaches (AMA) for operational risk as the only acceptable method of estimating capital 
charges for operational risk for a certain class of financial institutions. So for the most part of institutions 
worldwide, operational risk, in addition to credit and market risk, is a determinant of minimum capital 
requirements. About capital adequacy ratio, the minimum amount of capital that regulators require a bank 
to hold, both under Basel I and Basel II amount to 8% of risk weighted assets. What has changed under 
Basel II, basically, is the way how this 8% are derived. The calculation of the ratio is now more risk 
sensitive and takes into account the increased sophistication of banking business and in particular best 
practices developed over time in the banking industry. Consequence of the foregoing statement, this 
calculation includes, as a new element in the formula to arrive at 8%, an explicit charge for operational 
risk. Thus, there are now three areas of risk that are related to the minimum capital requirement – 1) credit 
risk (which was the focus of the original 1988 Accord), 2) market risk of trading activities (which was 
introduced in a 1996 amendment to the Accord) and 3) operational risk.  
 
𝑇𝑖𝑒𝑟1+𝑇𝑖𝑒𝑟2+𝑇𝑖𝑒𝑟3

𝐶𝑅+12.5(𝑀𝑅)+12.5(𝑂𝑅)
=≥ 8%          (1) 

 
Too little capital puts banks at risk, while too much capital prevents banks from achieving the required 
rate of return on capital.  
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Basel II and OR Approaches 
 
The BIA is the simplest approach and can be applied by all banks that either do not qualify for or are not 
obliged by their regulator to use one of the more sophisticated approaches. In the BIA, operational risk 
capital is calculated as a fixed percentage of a financial institution’s annual three year average positive 
Gross Income (GI): 
 
𝐾𝐵𝐼𝐴 = [∑(𝐺𝐼1…𝑛 ∗ 𝛼)]/𝑛          (2) 
 
whereby GI1..n denominates the amount of GI in those years over the three year horizon, in which the 
financial institution’s GI was positive and α denominates the scaling factor, which is currently set at 15% 
(BCBS, 2006). The Standardised Approach (SA) is relatively more advance compared to the Basic 
Indicator Approach (BIA). The Standardised Approach (SA) is better able to reflect the differing risk 
profiles across bank business activities. A financial institution that uses the SA is required to map its 
overall annual GI into eight business lines. The BCBS identifies the following business lines and their 
respective betas (2006) (Table 1). 
 
Table 1: Business Lines and Betas Factors 
 

Business Lines Beta Factors 
Corporate finance   (β1)  18% 
Trading and sales (β2) 18% 
Retail banking (β3) 12% 
Commercial banking (β4) 15% 
Payment and  settlement (β5) 18% 
Agency services (β6) 15% 
Asset management (β7) 12% 
Retail Brokerage (β8) 12% 

Table 1 shows business lines and betas 
 
Every business line has its own beta to indicate embedded risk. A financial institution's total operational 
risk capital is calculated as the sum of operational risk capital calculated for each business line. 
 
𝐾𝑡𝑠𝑎 = �∑ 𝑚𝑎𝑥[∑(𝐺𝐼1−8 ∗ 𝛽1−8), 0]𝑦𝑒𝑎𝑟𝑠 1−3 �/3       (3) 
 
A financial institution's total operational risk capital is then the sum of operational risk capital calculated 
for each business line. As it is well-known this methodology assumes implicitly that aggregate losses are 
perfectly correlated. AMA banks use internal risk measurement systems and rely on self-assessment via 
scenario analysis to calculate regulatory capital that cover their total operation risk exposure (both EL – 
Expected Loss and UL – Unexpected Loss) over a one-year holding period at a 99.9% statistical 
confidence level. Although the application of AMA is in principle open to any proprietary model, the 
most popular methodology is by far the Loss Distribution Approach (LDA). Loss Distribution Approach 
(LDA) is based on an annual distribution of the number and the total loss amount of operational risk 
events and an aggregate loss distribution, by modelling the loss severity and loss frequency separately and 
then combining them via a Monte Carlo simulation or other statistical technique to form an aggregate loss 
distribution (see e.g. Frachot et al., 2001, or Cruz, 2002). Under the Loss Distribution Approach, the bank 
estimates, for each business line/risk type cell, the probability distribution functions of the single event 
impact and the event frequency for the next (one) year using its internal data, and computes the 
probability distribution function of the cumulative operational loss. Following the usual LDA 
methodology, the aggregate loss is naturally defined as a random sum of individual losses:  
 
𝐿 = ∑ 𝑋𝑛 = 𝑋1 + ⋯ . +𝑁

𝑛=1 𝑋𝑛          (4) 
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where L is the aggregate loss, N is the annual number of losses (i.e. frequency of events) and Xn are loss 
amounts (i.e. severity of event). Accordingly aggregate losses result from two distinct sources of 
randomness (i.e. frequency and severity) which both have to be modelled. In essence the LDA model 
assumes the three following assumptions within each class of risk:  

 
i. N and  (𝑋1,𝑋2 … … ) are independent random variables. 
ii. 𝑋1,𝑋2,…is a set of independent random variables, 
iii. and 𝑋1,𝑋2 follow the same marginal distribution. 

The first assumption means that frequency and severity are two independent sources of randomness. 
Assumptions 2 and 3 mean that two different losses within the same homogeneous class are independent 
and identically distributed. Modelling the severity usually involves the application of parametric 
distributions such as the lognormal, Weibull, Pareto distributions, Lognormal-gamma, Exponential, 
Gamma or Loglogistic. Meanwhile, the frequency distribution is commonly modelled by Poisson, 
Binomial, and Negative Binomial distributions (de Fontnouvelle, Rosengren, and Jordan (2004) and Dutta 
and Perry (2006)). 
 
(i) The Log-normal distribution: 
 

𝑓(𝑥𝑖; 𝜇,𝜎) = 1
𝑥𝜎√2𝜋

𝑒−
1
2�
log(𝑥)−𝜇

𝜎 �
2

             ∀ 𝑥 ∈  𝑅+,𝜎 > 0, 𝜇 ≥ 0     (5) 
 

(ii) The Pareto distribution: 
 
𝑓(𝑥𝑖; 𝑎, 𝑏) = 𝑎𝑏𝑎

𝑥𝑎+1
      ∀ 𝑥 ≥ 𝑏,𝑎 > 0, 𝑏 > 0       

 (6) 
 
(iii) The Weibull distribution: 
 

𝑓(𝑥𝑖;𝛼,𝛽) = 𝛼
𝛽

× �𝑥
𝛽
�
𝛼−1

𝑒−�
𝑥
𝛽�

𝛼

       ∀ 𝑥 ∈  𝑅+,𝛽 > 0,𝛼 ≥ 0     (7) 
 

(iv) The Exponential distribution: 
 
ℎ(𝑥) = 1

𝜆
exp �− 𝑥

𝜆
�  𝐼[𝑜,∞)(𝑥)         (8) 

 
where the scale parameter 𝜆 > 0. The exponential distribution is a one parameter distribution used to 
model process with a constant time to failure per unit of time. The distribution is memoryless in  that 
𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡) = 𝑃(𝑋 > 𝑠) for all s,t   ≥ 0. 
 
(v) The Gamma distribution: 
 
ℎ(𝑥) = 1

𝜆𝛼ℶ(𝛼)
𝑥𝛼−1 exp �−𝑥

𝜆
� 𝐼[𝑜,∞)(𝑥)        (9) 

 
where 𝛼 and 𝜆 are positive, and ℶ(𝛼)=∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡∞

0  denotes the gamma function. It can be shown that if 
{𝑋𝑥}  are a sequence of independent exponentially distributed random variables with common parameter  
, then Y= ∑ 𝑋𝑡𝑛

𝑡=1  is distributed with  𝛼 = 𝑛 and common parameter 𝜆. The exponential distribution is a 
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special case of the gamma function for 𝛼 = 1 The chi-square distribution with k degrees of freedom is 
also a special case of the gamma distribution for 𝛼 = 2𝑘  and 𝜆 = 2. 
(vi) The Loglogistic distribution: 
 
ℎ(𝑥) =  𝜂(𝑥−𝛼)𝑛−1

[1+(𝑥−𝛼)𝜂]2 𝐼[𝑜,∞)(𝑥)          (10) 
 
Also sophisticated semiparametric distributions have been proposed. The generalized Champernowne 
distribution (GCD) is described in Champernowne (1936 and 1952) developed by Buch-Larsen, Nielsen, 
Guillen and Bolance (2005) in their semiparametric approach to better curve fitting in LDA. Use of the 
GCD coupled with a transformation approach can be found in papers by Gustafsson, Nielsen, Pritchard 
and Roberts (2006), Buch-Larsen (2006), Guillen, Gustafsson, Nielsen and Pritchard (2007), Clements, 
Hurn and Lindsay (2003), Buch-Kromann, Englund, Gustafsson, Nielsen and Thuring (2007) and 
Gustafsson and Nielsen (2008).  
 
(vii) The GCD distribution: 
 
𝑓(𝑥;𝛼,𝑀, 𝑐) = 𝛼(𝑥+𝑐)𝛼−1((𝑀+𝑐)𝛼−𝑐𝛼)

((𝑥+𝑐)𝛼+(𝑀+𝑐)𝛼−2𝑐𝛼)2 ∀ 𝑥 ∈  𝑅+,𝛼 > 0,𝑀 > 0, 𝑐 ≥ 0    (11) 
 
The historical experience of operational risk events suggests a heavy-tailed loss distribution, whose shape 
reflects highly predictable, small loss events left of the mean with cumulative density of EL. As loss 
severity increases, higher percentiles indicate a lower probability of extreme observations with high loss 
severity, which constitute UL. While banks should generate enough expected revenues to support a net 
margin after accounting for the expected component of operational risk from predictable internal failures 
(EL), they also need to provision sufficient economic capital to cover the unexpected component (UL). If 
we define the distribution of operational risk losses as an intensity process of time t, the cumulative 
distribution function of EL reflects a high expected conditional probability of small losses over time 
horizon T, so that 
 
𝐸𝐿(𝑇 − 𝑡) = 𝐸[𝑃(𝑇) − 𝑃(𝑡)|𝑃(𝑇) − 𝑃(𝑡) < 0]       (12) 
 
UL captures losses larger than EL below a tail cut off (or threshold value) E[𝑃𝛼(𝑇)− 𝑃(𝑡)].beyond which 
residual losses occur at a probability of α or less. The specification of UL (less EL) concurs with the 
concept of Value-at-Risk (VaR), which estimates the maximum loss exposure at a certain probability 
bound for a given aggregate loss distribution. Thus, we can write 
 
𝑈𝐿(𝑇 − 𝑡) = 𝑉𝑎𝑅𝛼(𝑇 − 𝑡) − 𝐸𝐿(𝑇 − 𝑡)        (13) 
 
UL estimates are more sensitive to the shape of the loss distribution than EL, due to the low probability of 
extreme losses. Losses in excess of UL are commonly denoted as extreme losses with cumulative density 
1 − 𝑉𝑎𝑅𝛼(𝑇 − 𝑡) which is also frequently referred to as residual risk “in the tail”. 
 
The regulatory capital requirement (or Capital-at-Risk) is the sum of expected loss (EL) and unexpected 
loss (UL) for a one year holding period and a 99.9 percent confidence interval. In other words according 
to the Committee the bank must be able to demonstrate that the risk measure used for regulatory capital 
purposes reflects a holding period of one-year and a confidence level of 99.9 percent. The Committee 
proposes to define the Capital-at-Risk (CaR) as the “unexpected loss", given by: 
 
𝐶𝑎𝑅1(𝛼) = 𝑖𝑛𝑓{𝑥 ∈ 𝑅|𝐹(𝑥) ≥ 𝛼} − ∫ 𝑥𝑓(𝑥)∞

0 𝑑𝑥       (14) 
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The total loss L of the bank is then the sum of aggregate losses for each business line x loss type class. Let 
H be the number of classes (where H = 7x8 in the Basel II context). Therefore: 
 
𝐿 = ∑ 𝐿ℎ𝐻

ℎ=1             (15) 
 
where Lh is the aggregate loss corresponding to the h class. 
The rare incidence of severe operational risk losses, however, does not mesh easily with the distributional 
assumptions of conventional VaR. The fat-tailed behaviour of operational risk defies statistical inference 
that characterizes loss severity, therefore conventional VaR is a rather ill-suited concept for risk 
estimation and warrants adjustments that explicitly account for extremes at high percentiles. The 
development of internal risk measurement models has led to a spread consensus that generalized 
parametric distributions, such as the g-and-h distribution or various limit distributions under extreme 
value theory (EVT), can be applied to satisfy the quantitative AMA standards for modelling the fat-tailed 
behaviour of operational risk under LDA (see Embrecht, Kiauppelberg, and Mikosch (1999) for a detailed 
mathematical treatment, also Reiss and Thomas (2001), Vandewalle et al. (2004), Stephenson (2002), and 
Coles et al. (1999) for additional information on the definition of EVT). EVT is a particularly appealing 
statistical concept to help improve LDA under AMA, because it delivers a closed form solution of 
operational risk estimates at very high confidence levels without imposing additional modelling 
restrictions if certain assumptions about the underlying loss data hold.   
 

The multivariate extreme value distribution can be written as 𝐺(𝑥) = 𝑒𝑥𝑝 �−(∑ 𝑦𝑖𝑛
𝑖=1 )𝐴�

𝑦1
∑ 𝑦1,…,𝑦𝑛𝑛
𝑖=1
∑ 𝑦𝑖
𝑛
𝑖=1

�� for 

𝑥 = (𝑥1, . . , 𝑥𝑛) where the i-th univariate marginal distribution 𝑦𝑖 = 𝑦𝑖(𝑥𝑖) − �1 + 𝜉𝑖
(𝑥−𝜇𝑖)

𝜎
�
− 1
𝜉𝑖 is generalized 

extreme value, with 1 + 𝜉𝑖
(𝑥−𝜇𝑖)

𝜎
> 0, scale parameter 𝜎𝑖 > 0 location parameter 𝜇𝑖 , and shape parameter 𝜉𝑖 . If 

𝜉𝑖 = 0 (Gumbel distribution), then yi is defined by continuity. The dependence function A(.) is defined on 
simplex 𝑆𝑛 = {𝜔𝜖𝑅+𝑛:∑ 𝜔𝑖

𝑛
𝑖=1 } with 0 ≤ max�𝜔1, … ,𝜔𝑛� ≤ 𝐴(𝜔) ≤ 1 for all 𝜔 = (𝜔1 … ,𝜔𝑛).  

 
GEV and GPD are the most prominent parametric methods for the statistical estimation of the limiting 
behaviour of extreme observations under EVT. GPD is an exceedance function that measures the residual 
risk of a sequence of extremes beyond a predefined threshold for regions of interest, where only a few or 
no observations are available (Vandewalle et al., 2004). Balkema and de Haan (1974) and Pickands 
(1975) state that, for a broad class of distributions, the values of the random variables above a sufficiently 
high threshold U follow a Generalized Pareto Distribution (GPD) with parameters x (the tail index) and b 
(the scale index, which is a function of U). The GPD can thus be thought of as the conditional distribution 
of X given X > U (see Embrechts et al., 1997, for a comprehensive review). Its probability distribution 
function (pdf) can be expressed as: 
 

𝐹(𝑦; 𝜉,𝛽) = 1 − �1 + 𝜉
𝛽
𝑦�

−1
𝜉           (16) 

 
where the “threshold excess” y is simply the difference x-U. 
 
The Weibull, Gumbel and Frechet distributions can be represented in a single three parameter model, 
known as the Generalised Extreme Value distribution (GEV). GEV identifies the possible limiting laws of 
the asymptotic tail behaviour associated with the order statistics of i.i.d. normalized extremes drawn from 
a sample of dependent random variables. Its pdf can be expressed as: 
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𝐺(𝜉,𝛼,𝜎)

⎩
⎨

⎧exp �−�1 + 𝜉 �𝑥−𝜇
𝜎
��

1
𝜉

 �1 + 𝜉 �𝑥−𝜇
𝜎
�� > 0, 𝜉 ≠ 0�

exp �− exp−�𝑥−𝜇
𝜎
��     𝑥 ∈ 𝑅, 𝜉 = 0

�     (17) 

 
The Peak-over-Threshold (POT) method is the most popular technique to parametrically fit GPD based 
on the specification of a threshold, which determines how many exceedance shall be permitted to 
establish convergence of asymptotic tail behaviour between GEV and GPD. Alternately Degen et al. 
(2006) proffer the g-and-h distribution as another generalized parametric model to estimate the residual 
risk of extreme losses. The g-and-h family of distributions was first introduced by Tukey (1977) and 
represents a strictly monotonically increasing transformation of a standard normal variable Martinez and 
Iglewicz (1984) show that the g-and-h distribution can approximate probabilistically the shapes of a wide 
variety of different data and distributions. 
 
The loss distribution for a certain loss type is characterized by frequency and severity. The frequency 
distribution describes the number of losses up to time t and is represented by a counting process N(t). The 
most popular distribution is the Poisson distribution. In the simplest case the aggregate loss up to time t 
simply follows a compound Poisson process of the form: 
 
𝑌𝑡(𝑥) = ∑𝐿𝑡=1 ∑ 𝑥𝜏,𝑟

𝑁𝑙(𝑡)
𝑟=1           (18) 

 
and is generated by adding up severities 𝑥𝜏,𝑟 of all loss types 𝑙 = {1, … . , 𝐿} over time 𝜏 up to t. 
 
WHAT HAS WORKED AT ALL 
 
Institutions face many modelling choices as they attempt to measure operational risk exposure. In order to 
understand the inherent nature and exposure of operational risk that a financial institution faces, we 
analyze various approaches that could be used to measure operational risk under the Loss Distribution 
Approach (LSA). The LDA has three essential components, a distribution of the annual number of losses 
(frequency), a distribution of the amount of losses (severity), and an aggregate loss distribution that 
combines the two.  
 
Frequency distribution and aggregate loss distribution: For short periods of time, the frequency of losses 
is often modelled either by a homogenous Poisson or by a (negative) binomial distribution. The choice 
between these distributions may appear important, as the intensity parameter is deterministic in the first 
case and stochastic in the second (see Embrechts et al., 2003). However, as the prudential requirement 
involves measuring the 99.9% OpVaR over a yearly period, this issue is only marginally relevant: 
Chapelle et al. (2005) evidence suggests that the mere calibration of a Poisson distribution with constant 
parameter l corresponding to the average number of observed losses during a full year provides a very 
good approximation of the true frequency distribution.  
 
Modelling Severity: One of the most significant choices is which technique to use for modelling the 
severity of operational losses. There are many techniques being used in practice, and for policy makers an 
important question is whether institutions using different severity modelling techniques can arrive at very 
different (and inconsistent) estimates of their exposure. There is no commonly agreed-upon definition of 
what constitutes a heavy-tailed distribution. However, one such definition can be based upon a 
distribution’s maximal moment, which is defined as sup {r :E(xr) < ∞}. Therefore , the majority of the 
distributions used in finance and actuarial sciences can be divided into these three classes, according to 
their tail-heaviness:  first, light-tail distributions with finite moments and tails, converging to the Weibull 
curve (Beta, Weibull); Second, medium-tail distributions for which all moments are finite and whose 
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cumulative distribution functions decline exponentially in the tails, like the Gumbel curve (Normal, 
Gamma,  LogNormal); third, heavy-tail distributions, whose cumulative distribution functions decline 
with a power in the tails, like the Frechet curve (T-Student, Pareto, LogGamma, Cauchy). 

 
To model the severity distribution, K. Dutta and J. Perry (2006) review two different techniques: 
parametric distribution fitting and Extreme Value Theory (EVT). In parametric distribution fitting, the 
data are assumed to follow some specific parametric model, and the parameters are chosen (estimated) 
such that the model fits the underlying distribution of the data in some optimal way. EVT is a branch of 
statistics concerned with the study of extreme phenomena such as large operational losses. Jobst (2007) 
parametric risk estimates of i.i.d. normalized maxima at the required 99.9th percentile implied capital 
savings of up to almost 97% compared to a uniform measure of operational risk exposure. 
 
According to P. de Fontnouvelle et al. (2004) loss data for most business lines and event types may be 
well modelled by a Pareto-type distribution, as most of the tail plots are linear when viewed on a log-log 
scale. Second, the severity ranking of event types is consistent across institutions. Clients, Products and 
Business Practices is the highest severity event type, while External Fraud and Employment Practices are 
the lowest severity event types.  
 
It is commonly accepted that lognormal and Weibull distributions fit operational loss data reasonably well 
over a large part of the distribution but can diverge in the tail due to underestimation of large sized losses. 
Conversely applying a Pareto distribution to the data gives a good fit to the tail (where there is sufficient 
data to allow this judgement) but a less good fit elsewhere. The ideal which we would seek is therefore to 
choose a distribution that performs well in the tail but also uses some of the better quality information 
available at smaller loss values to inform tail behaviour. J. Gustafsson, et al. (2008) aim to show that the 
GCD has the potential to be a good estimator across the full dataset. Chapelle et al. (2005) establish that 
the Generalized Champernowne Distribution (GCD) demonstrates a great flexibility and is therefore an 
appropriate choice for the severity side in LDA on operational risk data. The reason for investigating is 
that the GCD has an interior maximum that resembles a lognormal distribution and converges 
asymptotically to a Pareto distribution for extreme losses. This is a favourable feature when modelling 
operational losses. In the papers by Buch-Larsen et al (2005), Gustafsson et al (2006) and Guillen et al 
(2007) it is assumed that this distribution is more flexible and therefore more appropriate than the 
common lognormal or Weibull distributions.  
 
Gustafsson, et al. (2008) considers the question of the appropriate severity distribution estimators for Loss 
Distribution Analysis (LDA) of operational risk data. They compare the performance of four severity 
distributions. The capital requirements when using the GCD (both for VaR 99.5% and TVaR 99.5%) is 
right between the capital requirements when using the light tailed distributions (lognormal and Weibull) 
and heavy tailed Pareto. This leads authors to conclude that the GCD is suitable for use in LDA, its three 
parameter configuration making it more flexible than other estimators in this study and therefore better at 
capturing the whole of the data generating distribution.  
 
Jobst (2007) identified GEV, GPD, and the g-and-h distribution as feasible measurement approaches to 
assess the generalized parametric specification of the fat-tailed limiting behaviour commonly associated 
with large operational risk losses. In their effort to derive a consistent measure of operational risk across 
several U.S. banks, Dutta and Perry (2006) find that GPD tends to overestimate UL in small samples, 
contending its adequacy as a general benchmark model. To evaluate how well the model fits the observed 
loss data, J.M. Netter and A.B. Poulsen (2010) calculate Quantile-Quantile plots for both the OpRisk 
Analytics and OpVantage databases. These plots compare the predicted quantiles of the fitted loss 
distributions with the actual quantiles of the empirical loss distributions. The fit of both Quantile-Quantile 
plots does deteriorate towards the tail of the loss distribution. Overall, the results based on U.S. data 
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indicate that the logit-GPD model provides a good estimate of the severity of the loss data in external 
databases. In addition, the estimated loss severity is quite similar for the two databases examined. 
  
Jobst (2007) found that AMA-compliant risk estimates of operational risk under both EVT and the g-and-
h distribution generated reliable and realistic estimates of UL. More, in a simulation study of generic 
operational risk based on the aggregate statistics of operational risk exposure of U.S. banks, both GPD 
and GHD generate reliable and realistic AMA-compliant risk estimates of UL. In the effort to curb 
parameter uncertainty of GPD, they introduced the concept of the “threshold-quantile surface” as an 
integrated approach to illustrate the contemporaneous effect of the threshold choice, the estimation 
method, and the desired statistical confidence on the accuracy of point estimates and upper tail fit. Author 
found that the selection of the right percentile level rather than the threshold choice seemed to matter 
most for robust point estimates of aggregate operational risk. Estimation uncertainty increased 
significantly at high levels of statistical confidence beyond the 99.7th percentile or threshold quantiles 
that classified less than 0.5% of all losses as exceedances for the parametric GPD-based upper tail fit. 
More the GHD distribution outperformed both GEV and GPD in terms of the goodness of upper tail fit. In 
fact, the g-and-h distribution underestimated actual losses in all but the most extreme quantiles of 99.95% 
and higher, when EVT-based estimates overstated excess elongations of asymptotic tail decay. Authors’ 
findings suggest a symbiotic association between EVT and the g-and-h distribution for optimal point 
estimation depending on the percentile level and the incidence of extreme events. Moreover parametric 
risk estimates of i.i.d. normalized maxima at the required 99.9th percentile implied capital savings of up 
to almost 97% compared to an uniform measure of operational risk exposure.  
 
De Fontnouvelle et al. (2004) fit a set of distributions to the LDCE (Loss Data Collection Exercise) data 
via Maximum Likelihood. In general, the heavy-tailed distributions (Burr, LogGamma, LogLogistic, 
Pareto) seem to fit the data quite well. The reported probability values exceed 5% for many business lines 
and event types, which suggests that we cannot reject the null that data are in fact drawn from the 
distribution under test. Moscadelli (2004) shows that the Extreme Value model, in its severity 
representation (Peaks Over Threshold-Generalised Pareto Distribution, POT-GPD), provides an accurate 
estimate of the actual tail of the BLs at the 95th and higher percentiles; this is confirmed by the results of 
three goodness-of-fit tests and a severity VaR performance analysis. In light of its supremacy in the 
estimate of the loss tail-severity distribution, the Extreme Value model, in its Peaks Over Threshold - 
Point Process representation (POT-PP), is also used to estimate the loss tail-frequency distribution, that is 
to derive the probability of occurrence of the large losses in each BL. Owing to the higher frequency of 
losses, Retail Banking and Commercial Banking are the BLs which absorb the majority of the overall 
capital requirement (about 20 per cent each), while Corporate Finance and Trading & Sales are at an 
intermediate level (respectively close to 13 per cent and 17 per cent) and the other BLs stay stably under 
10 per cent. Moreover, the results show the very small contribution of the expected losses to the total 
capital charge: on average across the BLs, they amount to less than 3 per cent of the overall capital figure 
for an international active bank, with a minimum value of 1.1 per cent in Corporate Finance and a 
maximum of 4.4 per cent in Retail Banking. Moreover, one of the main remarks coming out of this paper 
is that, if the aim of the analysis is to estimate the extreme percentiles of the aggregated losses, the 
treatment of these two components within a single overall estimation problem may reduce the estimate 
error and the computational costs. As the paper makes clear, the EVT analysis requires that specific 
conditions be fulfilled in order to be worked out, the most important of which are the i.i.d. assumptions 
for the data.  
 
Also Hübnera, et al. (2005) find a reasonable statistical fit using the EVT POT method for most of the 
institutions. However they show that good fit does not necessarily mean a distribution would yield a 
reasonable capital estimate. This issue is especially of concern for the EVT POT approach, which gave 
the most unreasonable capital estimates with the most variation of all of the methods across the enterprise, 
business line, and event type levels. Also, the capital estimates for these institutions are highly sensitive to 
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the threshold choice. With respect to the capital estimates at the enterprise level, only the g-and-h 
distribution resulted in realistic, consistent and least varying capital estimates across institutions at the 
enterprise, business line, and event type levels. In the paper it shows that the g-and-h distribution results 
in a meaningful operational risk measure in that it fits the data and results in consistently reasonable 
capital estimates. More, in spite of many researchers have conjectured that one may not be able to find a 
single distribution that will fit both the body and the tail of the data to model operational loss severity; the 
g-and-h distribution imply that at least one single distribution can indeed model operational loss severity 
without trimming or truncating the data in an arbitrary or subjective manner.  
 
OR Approaches 
 
Jobst (2007) evidence from a cursory examination of balance sheet data of U.S. commercial banks 
suggests a significant reduction of economic capital from AMA-based self-assessment of operational risk. 
The standardized measure of 15% of gross income under BIA and TSA of the New Basel Capital Accord 
would result in a capital charge that grossly overstates the economic impact of even the most extreme 
operational risk events in the past, such as the physical damage to assets suffered by the Bank of New 
York in the wake of the 9/11 terrorist attacks.  
Sundmacher (2004) show that a financial institution that initially uses the BIA might only marginally 
benefit from moving to the next higher approach, the TSA. The benefits accruing from a lower capital 
charge might be offset by the compliance costs associated with the fulfilment of Basel’s qualifying 
criteria for the TSA. Further, the capital-saving in the TSA compared to the BIA will be highly dependent 
on the business units in which the financial institution generates the bulk of its Gross Income.  
 
The objective of Mongid’s paper (2009) is to estimate operational risk capital charge using historical data 
for 77 rural banks in Indonesia for a three-year period, 2006 to 2008. The study uses three approaches: (i) 
Basic Indicator Approach (BIA), (ii) Standardized Approach (SA) and (iii) Alternative Standardized 
Approach (ASA). He found that the average capital charge required to cover operational risk is IDR 154 
million (1.5% of asset). When the calculation is conducted using the SA method, he found, on average a 
requirement of IDR 123 million (1.23% of asset). When the calculation is conducted using the Alternative 
Standardized Approach (ASA), the capital required was IDR 43 million (0.43% of asset).  
 
A result from the work of Ebnother et al. (2001) is that only a fraction of processes needs to be defined to 
measure operational risk to a high level of accuracy. Hence, the costs for doing the necessary work to 
measure operational risk can be significantly reduced if one first concentrates on selecting the important 
processes. From a practitioners point of view an important insight is that not all processes in an 
organization need to be equally considered for the purpose of defining accurately the operational risk 
exposure. Management of operational risks can focus on key issues; a selection of the relevant processes 
reduces significantly the costs of defining and designing the workflow items (in Ebnother example, out of 
103 processes only 11 are needed to estimate the risk figures at a 90 percent level of accuracy). Second, 
although six risk factors were considered, only 2 of them seem to really matter. Following a similar 
approach Ebnother et al. (2002) find that 10 processes lead to a VaR of 98% of the VaR calculated from 
all processes. 
 
Correlation  
 
Sundmacher (2004) empirical findings show that the correlation between two aggregate losses is typically 
below 5%, which opens a wide scope for large diversification effects, much larger than those the Basel 
Committee seems to have in mind. In other words, summing up capital charges is in substantial 
contradiction with the type of correlation consistent with the standard LDA model. It would require 
allowing frequency and severity to be correlated with one another and within a risk type and business line 
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class, which is a clear departure from the standard LDA model. Author finally proposes the following 
simplified formula, for the global capital charge: 
 

𝐾 = 𝐸𝐿 + �∑ 𝜌𝑖,𝑗(𝐾𝑖 − 𝐸𝐿𝑖) × (𝐾𝑖 − 𝐸𝐿𝑖)𝐻
𝑖,𝑗=1        (19) 

 
However, even though this kind of correlation between frequency and severity can make sense in 
practice, this cannot be done but at the expense of model tractability, and the extended model thus 
obtained is far out of reach of what current databases and state-of-the-art technology can cope with.  
Dependence betweens risks can be modelled either as correlation between frequencies of loss events, or 
between their severities, or between aggregate annual losses. Frachot et al. (2004) explain that this 
dependence can be adequately captured in the LDA framework by the frequency correlations, but not by 
the severity correlations (see also Frachot et al. (2003) for a discussion of this topic). Brandts (2004) 
directly model the dependence of aggregate losses and propose to use copulas in order to combine the 
marginal distributions of different risk categories into a single joint distribution (see e.g. Genest and 
McKay (1986) or Nelsen (1999) for an introduction to copulas). In its work he tested 4 families of 
copulas. 
 
1. The Gaussian copula is naturally related to the Normal distribution. It is expressed as: 
 
𝐶𝑁𝑂𝑅𝑀𝐴𝐿(𝑢, 𝑣) = Φρ�Φ−1(u),Φ−1(v)�         (20) 
 
Where Φρ is the bivariate Normal distribution with correlation ρ and Φ is the standard Normal 
distribution. So, when the marginals are Gaussinan, it produces the multivariate Normal 
 
2. Frank’s copula (Frank (1979)) depicts a symmetrical dependence structure. It is expressed as:  
 
𝐶𝐹𝑅𝐴𝑁𝐾(𝑢, 𝑣) = − 1

𝛼
𝑙𝑛 �1 + (exp(−𝛼𝑢)−1)(exp(−𝛼𝑣)−1)

(exp(−𝛼)−1) � ,𝛼 ≠ 0      (21) 
 
3. Clayton’s copula (Clayton (1978)) models the lower tail dependence. It is given by: 
 
𝐶𝐶𝐿𝐴𝑇𝑇𝑂𝑁(𝑢, 𝑣) = 𝑚𝑎𝑥 �[𝑢−𝛼 + 𝑢𝑣−𝛼 − 1]

1
𝛼, 0� ,𝛼𝜖[−1,∞[\{0}     (22) 

 
4. The Gumbel-Hougaard copula (Gumbel (1960) and Hougaard (1986)) focuses on the upper tail 
dependence. The bivariate version of this copula has the form: 
 
𝐶0−ℎ(𝑢, 𝑣) = 𝑒𝑥𝑝 �− �(−𝑙𝑛 𝑢)𝛼(−𝑙𝑛 𝑢)

1
𝛼�� ,𝛼𝜖[1,∞[       (23) 

 
In Brandts’ study, the difference between various copulas is not very significant, probably because of the 
very low dependence between the business lines under consideration.  G.Hübner et al. (2005), aggregated 
business line (and event types) capital estimates for the g-and-h distribution in two different ways: 
assuming zero correlation (independence) and comonotonicity (simple sum of individual numbers). They 
observed that the differences between these two numbers are much smaller than we expected. Also, the 
diversification benefit of using comonotonicity at the enterprise level was not unreasonably high for the 
g-and-h distribution. The diversification benefit is much smaller for the summation of capital estimates 
from event types than from business lines.  
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Estimation Methods 
 
The MLE method is arguably the most frequently used estimation method in current operational risk 
capital quantification practice (de Fontnouvelle, Rosengren, and Jordan (2004)). The MLE assigns 
weights to the observations according to their likelihood. Because of that, the most of the weight gets 
concentrated in the body of the loss distribution resulting in a poor fitting of the distribution' right tail 
where the likelihood values are small. The accuracy of the estimates could be improved by exploring 
alternative estimation methods.  
 
B. Ergashev (2008) compares the performance of four estimation methods, maximum likelihood 
estimation included, that can be used in fitting operational risk models to historically available loss data. 
The other competing methods are based on minimizing different types of measure of the distance between 
empirical and fitting loss distributions. These measures are the Cramer-von Mises statistic, the Anderson-
Darling statistic, and a measure of the distance between the quantiles of empirical and fitting 
distributions. Authors call the last method the quantile distance method. The likelihood statistic is defined 
as: 
 
𝐿(𝑋𝜏|𝜃) =  ∏𝑛

𝑖=1 ∏ 𝑓(𝑙𝑜𝑔𝑋𝑖,𝑗𝜃, 𝜏)𝑁𝑖(𝜏)
𝑗=1         (24) 

 
The Cramer-Von-Mises statistic is defined as: 
 
𝑊2(𝜃) = 𝑁(𝜏)∫ [𝐹(𝑥|𝜏) − 𝐹(𝑥|𝜃, 𝜏)]2𝑑𝐹(𝑥|𝜃, 𝜏)+∞

−∞        (25) 
 
This statistic is a measure of “closeness” of the empirical and fitting distributions to each other. 
The Anderson-Darling (AD) is another measure of closeness of two distributions. In contrary to the 
Cramer-Von Mises statistic, this statistic gives more weight to the distance between the tails of the 
distributions. The AD statistic is defined as: 
 
𝐴2(𝜃) = 𝑁(𝜏)∫

[𝐹(𝑥|𝜏)−𝐹(𝑥|𝜃,𝜏)]2

𝐹(𝑥|𝜃,𝜏)�1−𝐹(𝑥|𝜃,𝜏)�
𝑑𝐹(𝑥|𝜃, 𝜏)+∞

−∞        (26) 
 
the Quantile Distance (QD) method is based on finding the parameter estimates that minimize the 
weighted sum of squares of the difference between a set of k quantiles of the two distributions 
corresponding to the cdf values of 0<p1<…pk<1 .This sum can be defined as: 
 
𝑄2(𝜃,𝑝,𝜔) = ∑ 𝜔𝑖

𝑘
𝑖=1 [𝑞𝚤� − 𝑞(𝜃,𝑝)]2         (27) 

 
Where p=(𝑝1, … … ,𝑝𝑘) are the quantile levels, 𝜔 = (𝜔1, … .𝜔𝑘) are the weights, and  
 
𝑞𝚤� = 𝑦[𝑛×𝑝𝑖], 𝑞𝑖(𝜃,𝑝) = 𝐹−1(𝑝𝑖|𝜃, 𝜏), 𝑖 = 1 … . .𝑘      (28) 
 
are the quantiles of the empirical and fitting distributions. 
 
Ergashev’s simulation exercise shows that the quantile distance method is superior to the other three 
methods especially when loss data sets are relatively small and/or the fitting model is unspecified.  
 
CONCLUSION 
 
Although the application of AMA is in principle open to any proprietary model, the most popular 
methodology is by far the Loss Distribution Approach (LDA). It is commonly accepted that light-tail 
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distributions fit operational loss data reasonably well over a large part of the distribution but can diverge 
in the tail due to underestimation of large sized losses. Conversely applying a heavy-tail distributions to 
the data gives a good fit to the tail (where there is sufficient data to allow this judgement) but a less good 
fit elsewhere. The ideal which we would seek is therefore to choose a distribution that performs well in 
the tail but also uses some of the better quality information available at smaller loss values to inform tail 
behaviour. There is a spread consensus that generalized parametric distributions, such as the g-and-h 
distribution or various limit distributions under extreme value theory (EVT), as GPD and GCD, can be 
applied to satisfy the quantitative AMA standards for modelling the fat-tailed behaviour of operational 
risk under LDA.  
 
More, in spite of many researchers have conjectured that one may not be able to find a single distribution 
that will fit both the body and the tail of the data to model operational loss severity; the g-and-h 
distribution and Peaks Over Threshold - Point Process representation (POT-PP), imply that one single 
distribution can indeed model operational loss severity. For what concern estimation methods, while the 
MLE method is arguably the most frequently used estimation method in current operational risk capital 
quantification practice, B. Ergashev (2008) comparing the performance of four estimation methods, 
shows that the quantile distance method is superior on average. Moreover some authors show that only a 
fraction of processes needs to be defined to measure operational risk to a high level of accuracy. Hence, 
the costs for doing the necessary work to measure operational risk can be significantly reduced if one first 
concentrates on selecting the important processes. While other find that the correlation structure between 
aggregate losses opens a wide scope for large diversification effects, much larger than those the Basel 
Committee seems to have in mind. We believe that this study contributes to a better understanding of 
operational risk management, trying to offer instructive and tractable recommendations for a more 
effective operational risk measurement. 
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