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ABSTRACT 

  
This paper calculates option portfolio Value at Risk (VaR) using Monte Carlo simulation under a risk 
neutral stochastic implied volatility model.  Compared to benchmark delta-normal method, the model 
produces more accurate results by taking into account nonlinearity, passage of time, non-normality and 
changing of implied volatility.  Two parameters in the model:  the correlation between underlying and the 
at –the-money implied volatility and the volatility of percentage change of the at- the-money implied 
volatility, can explain market skew phenomena quite well.  
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INTRODUCTION 
 

he measurement of financial market risk is of primary importance for senior management and 
regulators.  Value at risk (VaR) summarizes the worst loss of a portfolio over a given period with a 
given level of confidence (Jorion, 2000).  VaR has become widely used by financial institutions, 

corporations and asset managers (Morgan 1996).  The Basle Committee on Banking Supervision (BIS) 
and other central bank regulators also use VaR as a benchmark risk measure to determine the minimum 
amount of capital a bank is required to maintain as reserves against market risk (Pallota, Zenti 2000).  
There are some methods to calculate option portfolio VaR.  The most widely used is the Delta normal 
method. Even though this method is simple and straightforward, it does not take into account option non-
linearity, passage of time, changing implied volatility and non-normality of market price distribution 
(Hull and White 1998). 
 
If the percentage of underlying price change were to follow a normal distribution, then the implied 
volatilities of all options with different strikes would be equal to each other, and if we draw a graph with 
implied volatilities as Y-axis, option strikes as X-axis, and then we would get a flat line.  However, that is 
not case in the real world. In option market of equity and equity index instruments, we see a consistent 
left skew graph pattern.  In commodity option markets though, a consistent right skew graph pattern 
shows up.  This is widely known skew phenomena in option market. There are many papers that explain 
this phenomenon (Derman and Kani, 1994, Rubinstein, 1994, Hull and White, 1987, Heston, 1993, Stein 
and Stein 1991).  Peng He and Stephen Yau followed a relative new stochastic implied volatility 
framework and made some modification in the model setup.  This paper calculates Value at Risk under 
this model using Monte Carlo simulation, and compares the result with the benchmark, the Delta Normal 
Method.  In addition, this paper examines how the model parameters explain skew phenomena.  
 
The next section gives a detailed literature background about models used to explain skew phenomena, 
and a review of the stochastic implied volatility model developed by Peng He and Stephen Yau. The 
following section covers steps to do Monte Carlo simulation under this model, and the benchmark method, 
delta normal method.  The case study and result section compares the simulation result with the 
benchmark in a case study of two option portfolios.  In addition, this section explains market skew 
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phenomena by using the two parameters in the model and shows the skew graph.  The final session 
concludes. 
 
LITERATURE REVIEW AND BACKGROUND 
 
There is compelling evidence that exchange-traded options prices contain additional volatility information 
that can not backed out from the price information of the underlying security alone (He and Yau(2007), 
Christensen and Prabhala(1998), Cao and Chen (2000) etc).  Therefore, instead of deriving prices for 
them, a pricing model should use their prices as input.  Schonbucher (1998) and Ledoit and Santa Clara 
(1999) made this breakthrough and for the first time in the financial literature, the implied volatility is 
modeled as an input rather than as an output.  Hafner (2004) presented a factor-based model of the 
stochastic evolution of the implied volatility surface.  On the other hand, directly modeling the dynamics 
of implied volatilities is required by the nature of some exotic derivatives based on ATM (At-the-Money)  
implied volatility of an option written on a reference asset. 
 
In previous paper (He and Yau (2006)), we developed a risk-neutral diffusion model for the stochastic 
market implied volatility.  Unlike Hafner (2004) and Ledoit and Santa Clara (1998), we think modeling 
the whole implied volatility surface is dangerous because it is very difficult to guarantee no arbitrage 
between options with different strikes during the diffusion process of the corresponding implied 
volatilities of those options.  Instead, we model one implied volatility only.  Our model setup is also 
different from Schonbucher (1998).  We think the percentage movement of implied volatility is better 
modeled than the implied volatility itself.  The reason is the same as why people model the percentage 
movement of underlying asset price as opposed to underlying asset price itself.  Furthermore, this 
modification can ensure implied volatility is positive during the diffusion process.  After the proper setup, 
we derived the risk-neutral drift term of stochastic implied volatility, which is necessary to be no-
arbitrage.  We proved that the implied volatility of At-the-Money options mature immediately should 
converge to underlying volatility at rate of time to maturity, which specifies the stochastic process of 
underlying volatility.  Finally, we developed model as follows: 
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Where tθ  is instantaneous underlying volatility.  ),( Xt τδ  is the relative implied volatility indexed by  
time to maturity τ and moneyness tSKX /= , the ratio between strike and underlying price.  Therefore, 

)1,0( == Xt τδ is the implied volatility of ATM option maturing immediately.  ρ  is the correlation 
coefficient between one Brownian motion Z  and another Brownian motion W . β  is the volatility of 
percentage change of implied volatility.  
 
To simplify the model for use in practice, we assume tKδ∂ , tKδ

2∂ and tTδ∂ are zeros. The assumption is 
reasonable because empirical observations reveal that ATM implied volatilities are typically the same or 
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change little for small strike (or underlying price) change and small maturity time change.  This is in 
accordance with traders’ “sticky delta rule.”   
 
METHODOLAGY 
 
There are two approaches to compute VaR.  The first approach is to use local valuation.  Local valuation 
methods measure risk by valuing the portfolio once, at the initial time 0, and using local derivatives to 
deduce the possible movements.  The second approach uses full valuation. Full valuation methods 
measure risk by fully re pricing the portfolio over a number of scenarios. 
 
In the local valuation approach, practitioners calculate the VaR of option portfolios most commonly use 
the delta-normal method.  It uses the linear, or delta derivatives and assumes normal distributions.  The 
well-known formula is applied.  
 

TRN DScTVaR υαφα φ ||)(),,( 0)1,0(=         (4) 
  
Where )()1,0( αNc  is the α -quantile of the standard normal distribution. 0S is the initial underlying price. 

|| φD is the absolute delta of the option portfolio.  
TRυ is the volatility of return of the underlying during 

holding period ].,0[ T  
 
The full valuation approach uses Monte Carlo simulation or historical simulation to generate the 
probability distribution for portfolio value change TV∆ .  Let j

TV∆ denote the change in portfolio value 
over ],0[ T in scenarios Jj ,...1= .  Then the distribution function )(xF

TV∆ of TV∆ is approximated by: 
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I completed Monte Carlo simulation on the model, as followings.  Given a proper initial ATM implied 
volatility )1,0(0 =Xδ or underlying volatility tθ , underlying price 0S , interest rate r and two model 
parameters ρβ , , this dynamic system can be simulated from time 0 to time T as following: 
 

1. Suppose at any time t, Tt ≤<0 , we have got ))1,((, =XtorS ttt δθ and now we want to 
simulate ttS ∆+ and tt ∆+θ at time tt ∆+ , which Ttt ≤∆+ .The short time interval 

./)0( NTt −=∆  
2. At time t, generate the random next increment tt ZW ∆∆ , of Brownian motion for use over the 

current time interval [ ]ttt ∆+, .  Since tt ZW ∆∆ , are correlated, we set 

tW∆ = tt ∆,1ε          (6)  

ttZ ttt ∆−+∆=∆ 2
,2,1 1 ρερε       (7) 

 
Where tt ,2,1 ,εε are two independent random numbers from standard normal distribution. 

  
3. Approximate the solution of SDE equation for the underlying price by 
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   The simulation equation for the underlying volatility is based on Euler approximation, and here it is: 
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With ttS ∆+ , tt ∆+θ , now start to compute parameters at time tt ∆+ , return to Step 1, reset t to 
tt ∆+ and iterate until time T generate trajectories of tS and tθ . 

 
RESULTS 
 
The paper provides a case study to show difference between the delta-normal method and Monte Carlo 
simulation approaches.  Consider two option portfolios.  Suppose the underlying price is 100 and risk free 
interest rate is zero. The two portfolios consist of the following instruments.  1.  Portfolio 1 (PF1): A long 
position in 100 call option with strike 100=K  and maturity date is 42 days away and 2.  Portfolio 2 
(PF2): A long position in 100 ATM straddles (long position in both call and put option with same strike 
and same maturity) with strike 100=K  and maturity date is 42 days away. 
 
At time zero, the portfolio values ,2,1,0 =iV iPF are: 
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The objective of the following analysis is to compute the VaR for both portfolios over one business and 
ten business days.  The confidence level is set to 95%.  First consider the delta normal method. The Black 
Scholes deltas for the above call and put option are 0.5270, -0.4730 respectively, so the portfolio deltas 
are: 
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Using 645.1=%)5()1,0(NC , and volatility 0.4, the VaR for each portfolio and each holding period is 
computed according to the formulas.  Table 1 column, Delta-normal, lists the result. 
 
Now consider Monte Carlo simulation.  The parameters, chosen are 1,5.0,4.00 =−== βρθ .  
Following the procedure described as above, we generate 10,000 scenarios of σ,S over the time horizon 

],0[ T , where T equals 1 business day or 10 business days, respectively.  For each scenario, we compute 
the portfolio value and the change in portfolio value.  This provides us with a simulated distribution 
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function )(ˆ
Δ xF

TV
.  Given )(ˆ

Δ xF
TV

, VaR is easily computed as the negative −α quantile of TVΔ .  Table 1 
column “Paper Monte Carlo” lists the result. 
 
As shown in Table 1, the VaR computed under delta normal method is quite different from that computed 
under the paper Monte Carlo simulation.  For portfolio 2, under the delta-normal method, the VaR is 
lower than the VaR under paper Monte Carlo simulation, whereas for portfolio 1 it is opposite.  This can 
be explained as follows: Since the straddle position is almost delta neutral, the VaR is very small under 
the delta-normal method.  This, however, indicates one disadvantage of the delta-normal method.  The 
delta-normal method is a linear approximation, which cannot capture the nonlinearity of options.  In this 
case, the straddle position is exposed to relative big Gamma risk and Gamma is the quadratic part.  On the 
other hand, considering portfolio 1, the delta-normal method produces higher VaR than it should.  The 
obvious example is that 10-day holding period VaR for portfolio 1 under Delta normal method is 694 
Dollar.  The maximum amount of money one can lose when holding that call option, Portfolio 1 over 10 
days (or any day) is the initial option premium, i.e. 541.90 Dollar.  The reason the delta normal method 
produces too high a VaR for portfolio 1 is that the delta normal method does not account for the time 
decay of option prices.  
 
In fact, besides nonlinearity and passage of time, there are two other effects, non-normality and implied 
volatility variations, which the delta normal method fails to catch.  The delta normal method assumes the 
underlying return TR is normally distributed.  However convincing empirical studies have shown that 
underlying return tend to exhibit fat-tailed distributions.  In other words, extremely low and high returns 
have greater probability than assigned by the normal distribution.  The kurtosis of the log Terminal Price 
distribution for the above parameter set is 4.06, which explains fat-tailed distribution. In addition, the 
delta normal method assumes a constant underlying volatility, and thus constant implied volatilities. In 
fact, implied volatilities change over time.  In contrast, the paper Monte Carlo simulation captures all the 
effects mentioned in the above.  It is a much better method to compute VaR.  The only disadvantage of 
the paper Monte Carlo simulation is computation time.  However using today’s more and more powerful 
computers, the computation runs increasingly fast.   
 
Table1 Delta-normal VaR and Paper Monte Carlo simulation VaR for a confidence level of 95% 
 

 Delta-normal    Paper Monte Carlo 
Holding 
Period 

 1 Day 
VaR 

10 Day 
VaR 

 1 Day 
VaR 

10 Day VaR 

Portfolio 1 219 694  207 497 
Portfolio 2 23 71  109 373 

This table shows the delta-normal VaR and Paper Monte Carlo Simulation.  Results are in U.S. Dollars. 
 
Next we study how VaR changes with parameters in the paper model, namely β and ρ .  Those two 
parameters can explain market skew phenomena quite well.  For zero correlation between the underlying 
and volatility )0( =ρ , the implied volatility curve is symmetric and skewness is around zero.  Smile-
shape volatility curves are commonly observed for options on a foreign currency as shown in Figure 1.  
Our analysis is consistent with the empirical study (Bates 1996), which show  the correlation between 
implied volatilities and the exchange rate is close to zero.  For negative correlation )0( <ρ  , the implied 
volatility curve skews to left and skewness is negative.  Skew-shape volatility curves are commonly 
observed for options on equities and equity indices.  Our analysis is consistent with the empirical study 
(Christie 1982), which show the volatility of an equity price tend to be negatively correlated with the 
equity price. For positive correlation )0( >ρ , the implied volatility curve skews to right and the 
skewness is positive.  The bigger the absolute value of ρ , the more skewed of the curve and the bigger 
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the absolute value of the skewness.  On the other hand, the volatility of percentage change of implied 
volatilityβ  has an effect on the curvature of implied volatility curves.  With other parameter held fixed, 
the larger theβ , the larger the curvature of the implied volatility curve, the larger the kurtosis. 
 
Figure1 Implied volatility Curve and The moments of Log Terminal Underlying Price Distribution 
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Note: Simulated Implied Volatility Curves for options with maturity of 42 days.  The initial underlying volatility 0θ is 0.4 and interest rate r is 
zero.  The moments (Skewness and Kurtosis) are the moments of log terminal underlying price distribution. 
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VaR of the two option portfolios for different β and ρ are calculated and the results are presented in the 
Table 2.  The higher the skewness and kurtosis of the log terminal underlying distribution )(ln TS , the 
higher VaR value of both option portfolios.  
 
Table 2 Paper Monte Carlo simulation VaR of two option portfolios for different β and ρ for a 
confidence level of 95% 
 

    Portfolio 1 Portfolio 2 

β  ρ  Skewness Kurtosis 1 Day 
VaR 

10 Day 
VaR 

1 Day 
VaR 

10 Day 
VaR 

    1   -0.5    -0.053    4.027   207   497    109   373 

    1     0    -0.012     3.54   206   492    113    393   

    1    0.5     0,057    3.836      206   497    109    369 

    2   -0.5    -0.409    10.578    224   514    203    537 

    2     0    -0.066     7.055    225   512    213    573 

    2    0.5    0.385    10.728    226   513    202    546 

This table shows paper monte carlo simulation VaR of two option portfolios.  Results are in U.S. Dollars. 
 
CONCLUDING COMMENTS 
 
There are some limitations in the benchmark method for option portfolio VaR calculation.  In a related 
note, skew phenomena are widely known in the option market and there are many research papers to 
explain this.  This paper calculates VaR under a stochastic implied volatility using Monte Carlo 
Simulation, and compares the results with the benchmark, Delta normal method. 
 
The VaR calculation is more accurate because it considers nonlinearity, passage of time, non-normality, 
changing of implied volatility. In addition, two parameters in the model, the correlation between 
underlying and the at-the-money implied volatility and the volatility of percentage change of the at-the-
money implied volatility, can explain market skew phenomena quite well.  The ultimate goal of this study 
is to develop a method, which we can use in the real world.  Therefore, the limitation of this paper comes 
from two aspects.  The first aspect is that we need develop a simple way to calibrate the model using real 
market data. In this paper, when I do Monte Carlo simulation, I assume parameters, βρθ ,,0 .  It would be 
better if we can retrieve those parameters by calibrating to model to real market data.  The second aspect 
is that the computation of VaR can somehow be simpler and quicker, than the benchmark method.  
Therefore, future studies can either somehow increase the calculation speed or somehow find an 
approximate analytical solution to the model, so that the computation would be quicker.   
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