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ABSTRACT 

 
This paper is related to the work of Patton (2011), who proposed the required robust loss functions MSE 
and QLIKE for imperfect fluctuations in the proxy variables, as well as the use of GW and MCS test for 
statistical analysis.  In the same volatility model, the use the GW test pairing for comparing volatility 
forecasts of skewed and non-skewed error distributions.  With the exception of EGARCH, the results 
produce no clear evidence of better prediction by a non-skewed distribution.  In the same volatility model, 
the comparison of six different error distribution functions for volatility forecast showed no consistent result.  
In addition to the APARCH model with skewed Student-t distribution, the remaining results favored in non-
skewed error distribution function for better prediction.  In the comparison of all 30 models for forecasting 
volatility, better prediction models were all based on APARCH with six different error distribution functions.  
However, with a 90% confidence level, according to MCS tests, they all were included in the set of better 
volatility prediction models. A return with skewness, leptokurtic, and thick tail does not necessarily have 
the best performance in volatility prediction in the skewed error distribution.  
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INTRODUCTION   
 

luctuation phenomena, such as volatility clustering, kurtosis and leverage effects are important for 
financial markets.  During financial downturns, such as around the 2007-2008 tsunami, accurate 
volatility forecasts can be risk averse to asset prices, portfolios and risk management.  Fluctuations 

are unobservable and must be estimated from the model.  Good volatility models, in addition to being used 
for estimating, should also be used for prediction. 
 
The financial crises of 2008 caused great disturbance in every country's stock market and such a volatile 
situation would be worth a closer look.  Brownlees et al. (2011) argued the global financial crisis of 2008 
raised question about the appropriateness of using financial models, especially the standard tools for 
estimation and volatility forecasting.  Therefore, that they wanted to further investigate the model to verify 
its accuracy in volatility as the financial crises transmitted across various economic entities through time.  
The goals is to make valuable prediction of fluctuation. The research result was affirmative.  Therefore, our 
study used the five GARCH categories and six error distribution functions to study volatility forecasts of 
Taiwan's weighted stock price index during the financial tsunami period and classified them for volatility 
prediction comparison. The remainder of the paper is organized as follows.  The first section introduced the 
issue.  The second section introduces the data and methodology used in the study.  The third section 
illustrates the results and discussions.  The final section provides some concluding comments. 
 

F 
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LITERATURE REVIEW 
 
In the GARCH model, Engle (1982) first proposed the so-called ARCH model to estimate the return 
volatility of financial markets, followed by the generalized ARCH model, which was the so-called GARCH 
model proposed by Bollerslev (1986).  Derivatives of GARH models were subsequently proposes.  For 
example: Glosten et al. (1993) developed the GJR-GARCH model, Nelson (1991) developed EGARCH 
model, Ding et al. (1993) derived the APARCH model, and Engle and Lee (1999) simplified it to propose 
the CGARCH model.  These volatility models were used to complete the study. It is necessary to study the 
forecasting capabilities of GARCH, and consider the influence of different error distribution functions on 
the fluctuation forecast.  Wilhelmsson (2006) used a single GARCH with nine different error distribution 
functions to study the volatility prediction of the S & P500 futures index, in which the result showed that 
Student's t distribution forecast performance was better and a leptokurtic distribution function was better 
than a normal distribution function. Skewness of the distribution function, with higher dynamic difference, 
was not good for the fluctuation prediction.  
 
Chuang et al. (2007) investigated a single GARCH model with 13 different error distribution functions.  
They used seven national stock price indices and six exchange rates as data to study the effect of different 
error distributions on volatility predictions under the same model.  The estimation method was based on 
rolling estimation.  The result showed the volatility prediction of complex residual distribution functions 
was not necessarily better than the simple one in volatility prediction of the same period.   Lin et al. (2010) 
used the S&P 500 index to study GARCH with four different error distribution functions: Normal, Student-
t, heavy-tailed (HT) and skewed generalized-t distribution (SGT), and the GJR-GARCH and EGARCH 
with normal distribution functions to yield a total of six types, to study the volatility forecasts.  It is more 
important to consider whether the asymmetric distribution function displays leptokurtic, skewness, thick 
tails or leverage effects when considering the precision of a forecasting volatility model.  If asymmetric 
distributions were not considered, the GARCH model with normal distribution showed better performance 
in volatility forecast than the other three.  Brownlees' study found that, in the case of such severe fluctuations 
during the financial crisis, although the student-t distribution did take into account the thick tail, the use of 
Normal distribution and Student-t function was not different or better for volatility forecasts. 
 
Lee and Pai (2010) study the GARCH model, using three different error distribution functions (Normal, 
Student-t and SGT) on US REIT volatility forecast. By using DM-tests on the loss functions, MSE and 
MAE, the study found that GARCH-SGED produced better forecast results on volatility than the other two. 
Therefore, skewness and tail thickness of an error distribution could impact the volatility forecast.  Haque 
et al.(2014) analyzed the forecasting performance of the GARCH model with four error distribution 
functions, including Normal, Student-t, SGT and HT.  They also examined asymmetric models such as 
GJR-GARCH and EGARCH, to study volatility forecasts for  the  Karachi Stock Exchange 100 Index 
(KSE-100) and Value at Risk (Var). Research found that GARCH-HT and GARCH-SGT had better 
prediction on volatility. However Var, GARCH-T and GARCH-SGT had better prediction results.  Acuña 
et.al.(2015) used IBM stock to study the APARCH model, with five types of error distribution function, 
including: Normal, Student- t, Generalized Error, skew Student-t and Pearson type-IV distributions. The 
research used three minimal loss functions of MSE, MAE, and LOG LOSS showing that the skewed error 
distribution in the APARCH model had better volatility forecasts than the non-skewed distribution.  
Wilhelmsson (2006) and Haque et.al.(2014) argued that the GARCH-type volatility forecast model, which 
took into account the influence of different error distributions, were not well studied in the extant literature. 
Therefore, this article fills this gap in the literature. 
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DATA AND METHODOLOGY 
 
Data 
 
The research used the Taiwan weighted stock price index.  The study was conducted from Jan. 2, 2007 to 
Dec. 31, 2008, including 496 daily observations.  The data employed was retrieved from the database of 
Taiwan Stock Exchange website.  The segmentation method was the same as used by Brownlees et al.(2011) 
and Ewing et al.(2007) to study volatility during financial tsunami and the Great Depression.  The period 
for in-sample volatility prediction was from Jan. 2, 2007 to Sept. 13, 2008, while the period for out-sample 
volatility was from Sept. 16, 2008 to Dec. 31, 2008. The index return is calculated as 𝑟𝑟𝑡𝑡=100(lnPt- lnPt−1), 
in which Pt represented the index in the t-period.  While volatility proxies are commonly shown as squared 
returns or realized volatility, and according to Poon and Granger (2003) and Patton (2011) realized volatility, 
when compared with the squared returns, produces a less noisy estimate.  Therefore, when forecasting 
volatility, comparison of loss functions, using the realized volatility as proxy variables would be much 
better than the squared returns.  In this paper, five minutes of squared returns of intraday data were used as 
volatility proxy variables.  The estimation method adopted the rolling window estimation as proposed by 
Poon and Granger (2003) and Brownlees (2011), which assumed there were T samples in all samples, a 
number of R = T−P in the sample, and an extra prediction number of P.  The method requires disregarding 
the oldest entry of data to add a new one, to keep the estimated number at R in the samples.  It implies that 
during prediction of the second forecast we use the estimate of 2, 3……R+1 to predict R + 2 until all the 
data were completed.  However, during the financial tsunami, when policies were constantly introduced as 
measures, the estimation coefficient in the samples might vary, and thus, the method should produce better 
prediction results.  
 
Volatility Models 
 
The study involved a univariate GARCH-class model and produced one-step-ahead volatility forecasts, in 
which GARCH-type models included GARCH, EGARCH, GJR-GARCH, APARCH, and CGARCH. The 
models are described below. The GARCH model was derived by Bollerslev (1986) after Engle (1982) 
presented the ARCH model.  The GARCH (1,1) model was basically described as follows:  
 
 𝑟𝑟𝑡𝑡 = 𝑢𝑢𝑡𝑡 + 𝜀𝜀𝑡𝑡                                                                                                                                   (1) 
 
 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 +𝛽𝛽𝜎𝜎𝑡𝑡−12                                                                                                                 (2) 
                   
in which, 𝑢𝑢𝑡𝑡  was the conditional mean, and  𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡  and 𝑧𝑧𝑡𝑡〜N(0,1), 𝜎𝜎𝑡𝑡2  were conditional variables.  
Parameter limits included ω>0, α>0, β>0 and α+β<1.  α+β represented the persistence of volatility shock.  
GARCH estimation could estimate the phenomenon of the volatility cluster. The GJR-GARCH model was 
developed by Glosten et al. (1993). The original GARCH model was supplemented by an asymmetric 
condition to capture the effect of negative shocks on fluctuation.   
 
𝑟𝑟𝑡𝑡 = 𝑢𝑢𝑡𝑡 + 𝜀𝜀𝑡𝑡                              
𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡−12 +𝛽𝛽𝜎𝜎𝑡𝑡−12 +γ𝐼𝐼𝑡𝑡−1𝜀𝜀𝑡𝑡−12                                                                                                (3) 
 
Because the good news 𝜀𝜀𝑡𝑡−1 > 0 and bad news 𝜀𝜀𝑡𝑡−1 < 0 have different effects on the conditional variance 
of returns, to estimate the effect, it is generally assumed with  𝜀𝜀𝑡𝑡−1 < 0, where 𝐼𝐼𝑡𝑡−1=1, or else 𝐼𝐼𝑡𝑡−1=0.  
Therefore, the estimation effect on volatility due to good news would be α , while the bad news would have 
impact of α+γ.  When γ > 0, it represents a leverage effect in volatility, and when γ≠ 0, there is sign of 
asymmetry.   
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GRJ-GARCH is a nested model of GARCH. The statistical test method is different from the general non-
nested model when making accurate comparisons of two models. EGARCH (exponential GARCH) was 
proposed by Nelson (1991).  The linear GARCH model required estimated parameters to be non-negative, 
but in contrast, there is no such limit for the EGARCH.  The EGARCH (1,1) model specification is shown 
below: 
 
𝑟𝑟𝑡𝑡 = 𝑢𝑢𝑡𝑡 + 𝜀𝜀𝑡𝑡     
log𝜎𝜎𝑡𝑡2 = 𝜔𝜔 +  𝛼𝛼 �𝜀𝜀𝑡𝑡−1

𝜎𝜎𝑡𝑡−1
� + 𝛽𝛽log𝜎𝜎𝑡𝑡−12 +γ 𝜀𝜀𝑡𝑡−1

𝜎𝜎𝑡𝑡−1
                                                                                      (4) 

 
The left-form is the logarithm of the conditional variation. It is estimated that if the leverage effect exists, 
under the condition of γ<0, for the magnitude of leverage effect, its γ value should be converted through 
the index.  When the EGARCH is used for volatility prediction, it is necessary to be careful that prediction 
values cannot be non-negative.  When γ≠ is 0, there is an asymmetric volatility.  APARCH was proposed 
by Ding et al.(1993) and the configuration of APARCH(1,1) model is shown below: 
 
𝑟𝑟𝑡𝑡 = 𝑢𝑢𝑡𝑡 + 𝜀𝜀𝑡𝑡     
𝜎𝜎𝑡𝑡𝛿𝛿 = 𝜔𝜔 + 𝛼𝛼(|𝜀𝜀𝑡𝑡−1| − 𝛾𝛾𝜀𝜀𝑡𝑡−1)𝛿𝛿+β 𝜎𝜎𝑡𝑡−1𝛿𝛿                                                                                            (5) 
 
in which δ >0 and |𝛾𝛾|≤1.  γ   could reflect the phenomenon of asymmetry.  APARCH includes several 
special examples, derivative from the ARCH model. When δ=2 and γ=0, the GARCH(1,1) was used, while 
δ=2, GJR-GARCH would be used.  Engle and Lee(1999) considered the short-term and the long-term 
factors on volatility and proposed the following CGARCH model, as shown below: 
 
𝑟𝑟𝑡𝑡 = 𝑢𝑢𝑡𝑡 + 𝜀𝜀𝑡𝑡    
𝜎𝜎𝑡𝑡2 －𝑚𝑚𝑡𝑡= 𝛼𝛼(𝜀𝜀𝑡𝑡−12 − 𝑚𝑚𝑡𝑡−1)＋β(𝜎𝜎𝑡𝑡−12 − 𝑚𝑚𝑡𝑡−1)                                                                               (6) 
 
𝑚𝑚𝑡𝑡= 𝜔𝜔+γ(𝑚𝑚𝑡𝑡−1 − 𝜔𝜔)+δ(𝜀𝜀𝑡𝑡−12 -𝜎𝜎𝑡𝑡−12 )                                                                                               (7) 
 
In this model 𝑚𝑚𝑡𝑡, denotes time-varying long-term volatility, derived from (𝜀𝜀𝑡𝑡−12 -𝜎𝜎𝑡𝑡−12 ). It depends on γ to 
converge to a value of 𝜔𝜔, where γ was generally between 0.99 and 1. (𝜎𝜎𝑡𝑡2 − 𝑚𝑚𝑡𝑡) denotes the transitory 
component, in which β value was commonly converged to 0 and is dependent of the magnitude of α＋β 
value.  If the estimation produced 0<α＋β<γ<1, it showed more persistence of influence from long-term 
factors than from short-term factors.  
 
Error Distribution Functions 
 
The error distribution functions were classified into the skewed and non-skewed error distribution functions.  
The skewed error distribution functions included: skewed Normal, skewed Student-t, and skewed 
Generalized error distribution(GED). The non-skewed error distribution functions included: Normal,  
Student-t, and GED. The functions were described below. The error distribution of time series was generally 
assumed to be a normal probability density distribution function of the independently and identically 
distribution (IID) described as follows 
 
 f(𝑧𝑧𝑡𝑡) = 1

√2πσ
exp [− (𝑧𝑧𝑡𝑡−𝑢𝑢)2

2𝜎𝜎2
]                                                                                                            (8) 

 
Information on return rates showed the phenomenon of thick tails. The Student–t distribution would be 
more appropriate than the normal distribution in describing the feature.  If  𝑥𝑥𝑣𝑣, with degree of freedom as 
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ν, were the Student t-distribution and if ν>2, then it was possible to obtain Var(𝑥𝑥𝑣𝑣) = ν
ν   −2

.  By the use of  
𝑧𝑧𝑡𝑡 = 𝑥𝑥𝑣𝑣

�𝑣𝑣 𝑣𝑣−2�
 , the probability density function of 𝑧𝑧𝑡𝑡 would be 

 
 f(𝑧𝑧𝑡𝑡|ν) = Γ[(𝑣𝑣+1) 2⁄ ]

Γ(2𝑣𝑣)�(𝑣𝑣−2)π
(1 + 𝑧𝑧𝑡𝑡

𝑣𝑣−2

2
)−(𝑣𝑣+1) 2⁄   ，ν>2                                                                           (9)           

 
in which Γ�‧� was the Gamma function.  
 
The probability density function of the generalized error distribution function is described as follows: 
 

 f(𝑧𝑧𝑡𝑡) =
𝑣𝑣 exp (−12�

𝑧𝑧𝑡𝑡
𝜃𝜃 �

𝑣𝑣
)

𝜃𝜃2(1+1𝑣𝑣)Γ(1𝑣𝑣)
                                                                                                               (10) 

in which Γ�‧� was the Gamma function, θ = (2
−2
𝑣𝑣
Γ(1
𝑣𝑣)

Γ(3
𝑣𝑣)

  )
1
2.  If ν=2, then it would converges to a normal 

distribution function. When ν<2, there exists evidence of thick tails.  
 
In consideration of the random variable 𝑧𝑧𝑡𝑡, the probability density function of skewed normal distribution 
is described as: 
 
 f(𝑧𝑧𝑡𝑡)=2φ(𝑧𝑧𝑡𝑡)Φ(α 𝑧𝑧𝑡𝑡)                                                                                                                      (11)     
                                    
in which, φ(𝑧𝑧𝑡𝑡 ) is the probability density function of normal distribution Φ(α𝑧𝑧𝑡𝑡 ) is the cumulative 
distribution function of standard normal distribution and α was related with the form factor.  
 
The probability density function of skewed Student- t distribution is illustrated as: 
 

     f(𝑧𝑧𝑡𝑡︱ν, λ)=�
𝑏𝑏𝑏𝑏(1 + 1

𝑣𝑣−2
�𝑏𝑏𝑍𝑍𝑡𝑡+𝑎𝑎
1−λ

�
2

)−
𝑣𝑣+1
2    𝑖𝑖𝑖𝑖  𝑧𝑧𝑡𝑡 < −𝑎𝑎

𝑏𝑏
   

𝑏𝑏𝑏𝑏(1 + 1
𝑣𝑣−2

�𝑏𝑏𝑍𝑍𝑡𝑡+𝑎𝑎
1+λ

�
2

)−
𝑣𝑣+1
2    𝑖𝑖𝑖𝑖  𝑧𝑧𝑡𝑡 ≥ −𝑎𝑎

𝑏𝑏
  

                                                           (12) 

           

where 2<ν, -1<λ<1 , 𝑎𝑎 = 4λc 𝑣𝑣−2
𝑣𝑣−1

、 b=1 + 3λ2 − 𝑎𝑎2 and c =
Γ(𝑣𝑣+12 )

�π(𝑣𝑣−2)Γ(𝑣𝑣2)
. 

 
The probability density function of the standardized skewed generalized error distribution function is 
specified as: 
 
𝑖𝑖 �𝑧𝑧𝑡𝑡︱𝑣𝑣, λ� = 𝑣𝑣(2θ⋅Γ �1

𝑣𝑣
�)−1⋅exp (− |𝑧𝑧𝑡𝑡−𝛿𝛿|𝑣𝑣

[[1−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧𝑡𝑡−𝛿𝛿)⋅λ]𝑣𝑣𝜃𝜃𝑣𝑣
)                                                              (13) 

where θ = Γ(1
𝑣𝑣
)
1
2⋅Γ �3

𝑣𝑣
�
−12 ⋅𝑆𝑆(λ)−1, δ=2⋅λ⋅A⋅S(λ)−1、S(λ)=�1 + 3λ2 − 4𝐴𝐴2⋅λ2 

and A=Γ �2
𝑣𝑣
� ⋅Γ(1

𝑣𝑣
)
1
2⋅Γ �3

𝑣𝑣
�
−12.  

 
𝑣𝑣  was related with height and thick tails. λ was the parameter of skewness and -1<λ<1. λ>0, indicates 
negative skewness (right-modal), and vice versa for positive skewness if λ<0. Sign() is the symbol for 
function.  
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Comparison of Prediction Performance 
 
The true volatility σ2is unobservable. Choosing a good volatility to represent true volatility is important to 
assess the volatility prediction model.  The volatility proxy variables in this research are the realized 
volatility σt2 proposed by Andersen and Bollerrslev (1997) and were mainly based on 5-minute intraday 
data.  Realized volatility was an unbiased estimate of the conditional variance, which was the sum of all 
squared returns in the five-minute intraday data.  It would be important to select the appropriate loss 
function to use the volatility model to obtain the volatility σ�2 and proxy variables to achieve a realized 
volatility σt2.  Patton (2011) demonstrated issues associated with volatility proxies.  His research was realted 
to the use of imperfect volatility proxies, such as squared returns, realized volatility, and intra-day range 
volatility to assess model prediction performance.  He foujnd if the loss function is not robust, it could cause 
variation in the sequencing of volatility prediction models due to selection of a non-robust loss function. 
But, if a robust loss function were selected, then it would not be necessary to consider the effect on loss 
function due to different unit.  He concluded that many previous studies with inconsistent results and 
conclusions may be driven by selection of a non-robust loss function.  Further, the necessary and sufficient 
condition for the selection of the robust loss function should be homogeneous when using imperfectly 
volatility proxy variables. Brownlees believed that almost all loss functions used in the literatures needed 
to be excluded, except 
 
MSE=L(σt2, σ�2)=(𝜎𝜎𝑡𝑡2 − σ�2)2                                                                                                        (14) 
 
QLIKE= L(σt2, σ�2)=log σ�2+σt2

 σ�2
                                                                                                     (15) 

 
QLIKE was not affected by the extreme value of a tail.  Therefore, the main loss function selected in the 
research was QLIKE with MSE function as the supplement. Diebold (2015) argued that incorrect 
conclusions occur when comparing the minimum of loss functions, without regard to the significance of 
statistical precision, to conclude a model as the best or improved.  The use of statistical precision 
comparison models must fulfill the criteria of usage for the model. Common mistakes occur when using 
the Diebold-Mariano test, including the use rolling estimation in a nested model for comparison and 
inadequate fulfillment of stationary configuration of loss function.  Therefore, in the comparison of loss 
functions in the research, paired model comparison and multi-model comparison were used. The former 
employed the Giacomini and White (2006) test (GW test) and the latter employed the model confidence set 
(MCS test) by Hansen et al.(2011). 
 
Giacomini and White Test (GW Test) 
     
Under the same loss function Lt+τ(σt+τ2 ,σ�t+τ2  ), the comparison of forecasting volatility in the loss function 
of two models, which was referring to as the prediction value of ∆Lt+τ = �σt+τ2 − σ�1,t+τ

2 � − �σt+τ2 − σ�2,t+τ
2 � , 

σ�i,t+τ2  of the model i (i=1,2) in the t+τ period for statistical significance, was a common test for prediction 
performance of models.  The GW test assesses whether the conditional prediction ability of the two models 
is statistically different, and the prediction estimation method adopts the rolling estimation structure. It can 
be used in nested model comparison without the prerequisite of considering the problem of model mismatch 
and stationary state of loss function in the two models.  However, it is not applicable when recursive 
estimation was used as equation.  In the study, the GW test was used to compare volatility prediction 
performance improvement in the same model due to skewness. The null hypothesis was 

 
H0：E[∆Lt+τ︱ ɸt] =0                                                                                                                   (16) 
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The alternative hypothesis was 
 
H1：E[∆Lt+τ︱ ɸt] ≠0                                                                                                                    (17) 
 
in which ɸt  was an information set.  Rejection of H0  indicates a variation in prediction performance 
precision in the two models. When E[∆Lt+τ︱ ɸt]>0, model 2 had more precise prediction performance 
than model 1, and vice versa.  
 
Model Confidence Set Test (MCS Test) 
 
The MCS test was used for prediction equivalence comparison of multiple models.  The advantage was that 
the benchmark model was not required thus, it allowed comparison of more than one prediction 
performance.  The MCS test was used for comparison of the robust volatility prediction multiple models.  
The principle is as follows:  M0 included a finite numbered model with the model number of 1,2,…,m0. 
𝐿𝐿𝑠𝑠,𝑡𝑡 indicated the loss function value of the i model at t-point.  For all i,j∈M0, the difference in prediction 
loss function of any two models is: 
 
𝑑𝑑𝑠𝑠𝑖𝑖,𝑡𝑡  =𝐿𝐿𝑠𝑠,𝑡𝑡-𝐿𝐿𝑖𝑖,𝑡𝑡                                                                                                                                  (18) 

M∗ ≡{i∈ M0︱ E(𝑑𝑑𝑠𝑠𝑖𝑖,𝑡𝑡)≤0 ,∀ j∈ M0}                                                                                             (19) 
 
M∗ of the selection procedure was based on elimination of the model with statistically poor performance in 
each and every comparison.  The null hypothesis for such elimination was: 
  
H0,M ：E(𝑑𝑑𝑠𝑠𝑖𝑖,𝑡𝑡) =0 , ∀𝑖𝑖, j∈ M； M⊂M0                                                                                       (20) 
                  
The alternative hypothesis was: 
                  
H1,M ：E(𝑑𝑑𝑠𝑠𝑖𝑖,𝑡𝑡) ≠ 0 ,∀𝑖𝑖, j∈ M； M⊂M0                                                                                       (21) 
 
The MCS test procedure was based on the equivalence test δM  and the elimination rule  𝑒𝑒M .  However, 
δM was used for test  H0,M.  And, 𝑒𝑒M implied that when H0,M was rejected, the model with poor prediction 
performance would be eliminated from M.  This step is repeated until no other model was eliminated.  Until 
then, M�1−α∗  was obtained and combined into a set, indicating a collection of models with good prediction 
performance at 1-α confidence level.  For M ⊂M0,  δM and 𝑒𝑒M at α significance level, they must fulfill the 
following three criteria:  
 
lim
n→∞

sup P( δM = 1︱H0,M)≤α                                                                                                     (22) 

lim
n→∞

P(δM = 1︱H1,M) = 1                                                                                                          (23) 

lim
n→∞

P(𝑒𝑒M∈ M∗︱H1,M) = 0                                                                                                         (24) 
 
Lastly, the surviving objects in the model of  M�1−α∗  , which were not eliminated, were models with good 
prediction performance.  P-values with higher statistical significance α, indicated better performance of the 
model.  For the statistics of p-value, Hansen et al. (2011) recommended a bootstrap method for constructing 
t-statistics, including two types. The range statistic TR and semi-quadratic Statistic TSQ are defined as: 
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TR =   𝑚𝑚𝑎𝑎𝑥𝑥
𝑠𝑠,𝑖𝑖∈𝑀𝑀 �𝑡𝑡𝑠𝑠𝑖𝑖�                                                                                                                                (25) 

    
 TSQ=  𝑚𝑚𝑎𝑎𝑥𝑥

𝑠𝑠∈𝑀𝑀 𝑡𝑡𝑠𝑠                                                                                                                                   (26) 
 
in which 𝑡𝑡𝑠𝑠𝑖𝑖 = 𝑑𝑑�𝑖𝑖𝑖𝑖

�var� (𝑑𝑑�𝑖𝑖𝑖𝑖)
   ；𝑡𝑡𝑠𝑠=

𝑑𝑑�𝑖𝑖
�var� (𝑑𝑑�𝑖𝑖)

  ；�̅�𝑑𝑠𝑠𝑖𝑖 = 𝑛𝑛−1 ∑ 𝑑𝑑𝑠𝑠𝑖𝑖,𝑡𝑡
𝑠𝑠
𝑡𝑡=1  ；   �̅�𝑑𝑠𝑠 = 𝑚𝑚−1 ∑ �̅�𝑑𝑠𝑠𝑖𝑖𝑖𝑖∈𝑀𝑀 . 

 
RESULTS AND DISCUSSIONS 
 
The descriptive statistics, as seen in Table 1, showed that at a 1% statistical significant level, we reject the 
normal distribution and revealed a unit root. The kurtosis, was leptokurtic.  Skewness showed positive shift. 
 
Table 1︰Summary Statistics 
 

Obs Mean Std. Dev Kurtosis Skewness J-B Q(20) ADF 
496 -0.11 1.78 4.44 -0.24 47.56*** 36.58*** -21.48*** 

*** Denoted significantly at the 1% level. 
 
In the paired comparison of the same GARCH performance between the skewed and non-skewed error 
distribution, the GW test on the loss functions of MSE and QLIKE were shown in Table 2 and 3.  From 
Table 2 and Table 3, we see that at the 10% significance level, the loss functions MSE and QLIKE showed 
the EGARCH with denied null hypothesis.  This finding suggests that the remaining candidates, such as 
GARCH, GJR-GARCH, APARCH and CGARCH, could not prove that under a fixed GARCH-type, the 
prediction performance of a skewed residual distribution was definitely better than a non-skewed 
distribution during the financial tsunami.  However, the EGARCH model with non-skewed residual 
distribution showed a better significance. 
 
Table 2: GW Test of Out-of-Sample Forecasts (MSE) 
 

 SNORM SSTD SGED 
 T-Stat P-Val T-Stat P-Val T-Stat P-Val 
GARCH 4.191 0.123 4.699 0.095 3.811 0.149 
EGARCH   5.086 0.079 5.716 0.057 6.069 0.048** 
GJR-GARCH 3.271 0.195 3.375 0.185 3.593 0.166 
APARCH 0.941 0.625 1.190 0.552 2.522 .0.283 
CGARCH 2.192 0.334 0.074 0.964 0.757 0.685 

This table presents the statistic and p-values of the GW test performed for pairs of models, with the no-skew distribution as a benchmark.  The t-
stat indicates the significance of a model’s performance relative to the benchmark model. 
 
Table 3: GW Test of Out-of-Sample Forecasts (QLIKE) 
 

 SNORM SSTD SGED 
 T-stat P-val T-stat P-val T-stat P-val 
GARCH 4.738 0.094 4.941 0.085 4.427 0.109 
EGARCH   0.744 0.689 6.031 0.049** 6.700 0.035** 
GJR-GARCH 0.753 0.686 3.016 0.221 3.462 0.177 
APARCH 0.483 0.785 3.125 0.210 1.146 0.564 
CGARCH 0.276 0.871 0.478 0.787 0.266 0.876 

This table presents the statistic and p-values of the GW test performed for pairs of models, with the no-skewed distribution as a benchmark.  The t-
stat indicates the significance of a model’s performance relative to the benchmark model. 
 
In the financial tsunami, Table 4 and Table 5 report statistics using the MCS statistical test for loss functions 
MSE and QLIKE and six types of error distribution functions.  Results show that under the same GARCH-
type model, at a 90% confidence level, the QLIKE loss function, with exception of exclusion of skewed 
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EGARCH as a better model, the remainders were included.  In GARCH, EGARCH, and GJR-GARCH, the 
non-skewed error distribution for volatility prediction, under the MCS test, was more likely to be included 
as the better model with a more relaxed confidence level.  GARCH, EGARCH and GJR-GARCH showed 
better volatility prediction in the Student-t distribution.  While APARCH had better volatility forecast in 
the skewed Student-t distribution, the CGARCH had better volatility forecast in normal distribution.  
Therefore, in the fixed model, because of the model selection, the best prediction of volatility appears in 
the different error distribution function without a consistent result. 
 
Table 4: MCS Test of Out-of-Sample Forecasts with Different Distributions    
 

 MSE 

 GARCH EGARCH GJR-GARCH APARCH CGARCH 

 Rank Pmcs Rank Pmcs Rank Pmcs Rank Pmcs Rank Pmcs 

Nor 3 0.214 3 0.346 1 1.000 4 0.389 1 1.000 

Std 1 1.000 1 1.000 2 0.952 2 0.455 6 0.618 

Ged 2 0.762 2 0.346 3 0.952 3 0.389 2 0.831 

Snor 6 0.158 5 0.105 4 0.305 6 0.234 3 0.831 

Sstd 4 0.214 4 0.105 5 0.305 1 1.000 5 0.618 

Sged 5 0.214 6 01.05 6 0.305 5 0.256 4 0.831 
Performance based on the different distributions of the GARCH -type and MCS tests (Pmcs) obtained by the same GARCH- type in different 
distributions.  The superscripts ∗ , ∗∗ , and ∗ ∗ ∗ represent the significance level of 10%, 5%, and 1%. 
 
Table 5: MCS Test of Out-of-Sample Forecasts with Different Distributions    
 

 QLIKE 

 GARCH EGARCH GJR-GARCH APARCH CGARCH 

 Rank Pmcs Rank Pmcs Rank Pmcs Rank Pmcs Rank Pmcs 

Nor 3 0.177 3 0.111 3 0.259 5 0.234 1 1.000 

Std 1 1.000 1 1.000 1 1.000 2 0.234 6 0.364 

Ged 2 0.586 2 0.111 2 0.259 3 0.234 3 0.876 

Snor 6 0.165  0.046** 4 0.240 6 0.149 2 0.876 

Sstd 4 0.177  0.046** 3 0.240 1 1.000 5 0.364 

Sged 5 0.177  0.046** 6 0.240 4 0.234 4 0.876 
Performance based on the different distributions of the GARCH -type and MCS tests(Pmcs) obtained by the same GARCH- type in different 
distributions. The superscripts ∗ , ∗∗ , and ∗ ∗ ∗ represent the significance level of 10%, 5%, and 1%. 
 
Table 6 shows that under the MCS statistical tests for all models with loss functions QLIKE and MSE, at 
90% confidence level, all models were included in the set with better volatility prediction performance.  
The best volatility prediction model for the financial tsunami was the skewed Student t-distribution of the 
APARCH model.  
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Table 6: MCS Test of All 30 Out-of-Sample Forecasting Models 
  

  QLIKE MSE2 
  Loss(*𝟏𝟏𝟏𝟏𝟑𝟑) Rank Pmcs Loss(*𝟏𝟏𝟏𝟏𝟕𝟕) Rank Pmcs 
 Nor -6.042 8 0.381 7.725 19 0.560 
 Std -6.048 4 0.381 7.645 16 0.568 
GARCH  Ged -6.048 5 0.381 7.652 17 0.568 
    Snor -6.029 16 0.381 7.869 23 0.445 
 Sstd -6.034 11 0.381 7.821 22 0.560 
 Sged -6.030 15 0.381 7.861 24 0.560 
 Nor -5.996 28 0.381 7.468 14 0.569 
 Std -6.021 19 0.381 7.385 10 0.569 
EGARCH Ged -6.010 24 0.381 7.427 11 0.569 
 Snor -5.987 29 0.167 7.733 20 0.326 
 Sstd -6.000 27 0.191 7.677 18 0.386 
 Sged -5.987 30 0.161 7.737 21 0.329 
 Nor -6.033 13 0.381 7.243 7 0.569 
 Std -6.047 6 0.381 7.250 8 0.569 
GJR-GARCH Ged -6.040 9 0.381 7.253 9 0.569 
 Snor -6.026 17 0.381 7.463 12 0.560 
 Sstd -6.033 12 0.381 7.467 13 0.568 
 Sged -6.026 18 0.381 7.486 15 0.560 
 Nor -6.035 10 0.381 7.067 4 0.569 
 Std -6.070 2 0.381 6.826 2 0.569 
APARCH Ged -6.056 3 0.381 6.921 3 0.569 
 Snor -6.031 14 0.355 7.167 6 0.425 
 Sstd -6.122 1 1.000 6.535 1 1.000 
 Sged -6.047 7 0.381 7.142 5 0.514 
 Nor -6.017 20 0.381 7.964 25 0.560 
 Std -6.002 26 0.381 8.096 30 0.560 
CGARCH Ged -6.014 22 0.381 7.994 26 0.560 
 Snor -6.015 21 0.381 7.997 27 0.560 
 Sstd -6.004 25 0.381 8.083 29 0.560 
 Sged -6.013 23 0.361 8.027 28 0.560 

This table presents the Loss functions statistic and p-values of MCS  test that is performed for 30 models. 
 
CONCLUSION 
 
Volatility variables play an important role in options and risk management. In this paper, we used the 
Taiwan’s weighted stock price index during the 2007 to 2008 financial tsunami period to study five 
volatility models and six error distributions. When the extreme condition occurs, could the skewed error 
distribution function be better than non-skewed function in predicting volatility? The five volatility models 
included: the standard GARCH, the EGARCH with leverage effect, the GJR-GARCH for explaining the 
negative impact on volatility, the APARCH for reflecting the asymmetric phenomenon, and the CGARCH 
for demonstrating variation between short-term and long-term impact on volatility. In a paired study of a 
volatility model with skewed and non-skewed error distribution, by using GW test to examine the loss 
function, we found that, an exception to the EGARCH with STD and GED as error distribution and a better 
volatility forecast by a non-skewed function. No other data produced a better prediction volatility model 
with skewed error distribution during the time of financial crisis.  
 
In research on a single volatility model with 6 error distribution functions, the MCS-test was used to 
examine the loss function at a 90% confidence level. We found that skewness was no better than a non-
skewed function, and even showed the opposite in the EGARCH model. In the study of all 30 models, using 
MCS-test at 90% confidence level, to determine if there is any chance that  a non-skewed error distribution 
could result in worse prediction, none of the results support this notion. Therefore, although Taiwan’s 
weighted stock price index showed a high narrow peak and a left skewness in its distribution during a 
financial crisis period, it could not significantly improve the volatility forecast. The EGARCH predicted a 
worst case scenario for the financial market. During an extreme event, such as a financial crisis, a volatility 
model with skewed error distribution function could not significantly improve the prediction result. 



The International Journal of Business and Finance Research ♦ VOLUME 11 ♦ NUMBER 2 ♦ 2017 
 

49 
 

Therefore, it was not necessarily true that a return with skewness, leptokurtic, and thick tails would have 
the best performance in volatility prediction in the skewed error distribution.  
 
We note the following limitations of the work here.  In consideration of the impact on MSE loss function 
during an extreme event, the MSE loss function was listed on the statistical test, but only for reference 
without further detail description. Future research, might include more volatility models or consider 
whether different volatility proxy variables could affect the selection choice of the error distribution 
function. Every market trading mechanism is different and in the future, the impact of a financial crisis on 
volatility forecast results can be further studied. 
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