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ABSTRACT 

 
We investigate the performance of the Heston stochastic volatility model in describing the probability 
distribution of returns both in the case of single assets and in the case of asset portfolios. The R. 
parameters of the Heston model are estimated from observed market prices using a simple calibration 
method based on an integral representation of the exact probability density function of returns derived by 
Dragulescu and Yakovenko (2002). In the case of multiple correlated assets, the correlation parameters 
are obtained using a heuristic procedure based on a matrix completion algorithm. We present numerical 
experiments where several stocks traded on the Italian financial market are considered. We show that, 
both in the case of single assets and in the case of multiple correlated assets, the Heston model provides 
an excellent agreement with historical time series data and fits the empirical probability distribution of 
returns far better than the lognormal model. 
 
INTRODUCTION 
 

n this paper we assess the performances of the Heston model (HM) in describing the probability 
distribution of stock returns on the Italian financial market. At the same time we propose a simple 
method to calibrate the HM that gives an excellent agreement with historical time-series data both in 

the case of single and multiple correlated assets. 
 

I
The paper is organized as follows: in Section 2 we provide a review of related literature. In Section 3 we 
briefly recall the basic facts about the LM. In Section 4 we give a description of the HM in the case of 
single and multiple correlated assets. In Section 5 we describe the calibration method used to estimate the 
parameters of the HM. Finally, in Section 6 we present and discuss the numerical results obtained 
applying the calibration algorithm developed in Section 5. 
 
LITERATURE REVIEW 
 
The dynamics of stock market prices is often described by the lognormal model (LM). Based on the 
assumption of constant drift and volatility, the LM gives a normal probability distribution of asset returns 
and therefore it is a very simple and tractable model. This is the reason why the LM, originally introduced 
by Bachelier (1900) and refined by Osborne (1959), is still nowadays very popular among financial 
researchers and practitioners. 
 
Nevertheless many empirical studies on financial markets show that the probability distribution of stock 
returns is far from being normal. In particular, empirical observations of option prices reveal that the 
volatility of the underlying stocks varies as a function of the strike prices (the so-called smile effect, see 
Wilmott, 1998). Moreover the probability distribution of realized returns is often leptokurtic, i.e. it has 
fatter tails and higher peaks than the lognormal probability distribution (Bouchaud & Potters, 2001, Fama, 
1965). 
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This empirical evidence motivated several authors to reject the assumption of constant volatility and to 
introduce the so-called stochastic volatility models; that is, models where the asset price volatility is 
described as a stochastic process. Among the stochastic volatility models that can be found in the 
literature, see for instance Heston, 1993, Hull & White, 1987, Melino & Turnbull, 1990, Scott, 1987, 
Stein & Stein, 1991, the Heston model (Heston, 1993) has received considerable attention since it gives 
an adequate description of stock market dynamics (Dragulescu & Yakovenko, 2002, Prange, Silva & 
Yakovenko, 2004) and yields tractable closed-form solutions (Dragulescu & Yakovenko, 2002, Heston, 
1993). 
 
In the financial literature the calibration of the HM is usually performed using two different approaches: 
in Aboura, 2004, Forbes, Martin & Wright 2002, Heston, 1993, Pan, 2002, the HM is calibrated 
consistently with observed option prices, while in Daniel, Joseph & Bree, 2005, Dragulescu & 
Yakovenko, 2002, Prange, Silva & Yakovenko 2004, Silva & Yakovenko, 2001 the parameters of the 
HM are estimated by fitting the probability distribution of realized asset prices. 
 
In this paper we follow the latter approach since several stocks traded on the Italian financial market do 
not have options written on them. In particular, in the case of single assets, the calibration method 
proposed in this manuscript is similar to the one developed by Dragulescu and Yakovenko (2002). In 
Dragulescu & Yakovenko, 2002, an integral representation of the probability density function of returns 
of the HM is derived (Formula (23) p. 446). Note that this formula is an exact formula that gives the 
probability distribution of returns conditioned to the value taken by the initial variance. In addition 
Dragulescu and Yakovenko (2002) obtain also another expression for the probability density function of 
returns of the HM (Formula (28) p. 446), where the initial variance does not appear. This second formula 
is an approximate formula, since it is based on the assumption that the probability distribution of the 
initial variance is equal to the steady state probability distribution of the variance process.  
 
The approximate formula of Dragulescu & Yakovenko (2002) is used in Daniel, Joseph & Bree, 2005 to 
calibrate the HM against the Dow Jones Industrial Average, S&P 500, FTSE 100 indexes, in Dragulescu 
& Yakovenko, 2002 to estimate the parameters of the HM against Dow Jones index time-series data, in 
Prange, Silva & Yakovenko, 2004 to estimate the parameters of the HM for several stocks belonging to 
the Dow Jones index, and in Silva & Yakovenko, 2001 to calibrate the HM for the S&P 500, NASDAQ 
and Dow Jones indexes. Note that in these works the value taken by the initial variance of the asset 
returns is not estimated, since it is not contained in the approximate formula of Dragulescu & Yakovenko, 
2002. 
 
The calibration method developed in this paper is based on the exact closed-form expression of the 
probability density function of the HM derived in Dragulescu & Yakovenko, 2002, Formula (23) p. 446. 
In particular we treat the initial variance of asset returns as an additional parameter of the model, so that 
we do not have to assume that the initial variance has stationary probability distribution, as done in 
Daniel, Joseph & Bree, 2005, Dragulescu & Yakovenko, 2002, Prange, Silva & Yakovenko, 2004, Silva 
& Yakovenko, 2001. Moreover, contrary to the calibration methods proposed in Daniel, Joseph & Bree, 
2005, Dragulescu & Yakovenko, 2002, Prange, Silva & Yakovenko, 2004, Silva & Yakovenko, 2001, our 
approach allows to estimate the value taken by the initial variance.  
 
First of all the method to calibrate the HM is developed in the case of single assets and then it is extended 
to the case of multiple correlated assets. In this latter case the correlation parameters of the HM are 
estimated using a heuristic technique based on a suitable matrix completion algorithm.   
We estimate the parameters of the HM for several stocks belonging to the Italian Stock Exchange using 
historical data on a daily basis from June 2002 to June 2006.  The results obtained show that using the 
calibration algorithm proposed in this paper the HM provides an excellent agreement with empirical data 
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both in the case of single and multiple correlated assets. In particular the HM  captures the kurtosis effect 
exhibited by the empirical probability distribution of returns.  
 
We point out that the contribution of this paper is twofold. First, we show that the HM describes the 
probability distribution of returns far better than the LM for stocks belonging to the Italian financial 
market. Second, we propose a method to calibrate the HM that is very easy to implement and performs 
very well both in the case of single assets and in the case of asset portfolios. From the practical standpoint 
we believe that these results can be very interesting for a stock trader. In fact it is crucial for a financial 
investor to use a mathematical model of stock prices which is simple to calibrate and provides a good 
agreement with realized returns. 
 
THE MODEL 
 
The Lognormal Model 
 
Let S(t) denote the price of an asset at time t and let t0 denote the current time. According to the lognormal 
model (LM), S(t) is described as a stochastic process satisfying the stochastic differential equation: 
 

0    ),(
)(
)( tttWddt

tS
tdS

≥+= σμ ,    (1) 

 
with initial condition: 
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In (1), μ and σ are constant parameters, called drift and volatility, respectively, and W(t) is a standard 
Wiener process. 
Let us define the asset return over the time interval [t0 , t]:  
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Using Ito’s lemma, equation (1) and initial condition (2) can be rewritten as follows: 
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The parameters μ and σ can be estimated from realized asset prices in a very simple way. In fact let us 
consider a set of equally spaced time values t0, t1, …,tn and let us define Δt= tk – tk-1, k=1,2,…,n. 
Equation(4) implies that asset returns are distributed as follows: 
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where Normal(a,d) denotes the normal probability distribution with mean a and standard deviation d. 
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Let Sk denote the asset price observed at time  tk , k=1,2,…,n, let us consider the realized returns: 
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and let mean and var respectively denote the sample mean and the sample variance of the realized returns: 

∑∑
==

−
−

==
n

k
k

n

k
k meanx

n
varx

n
mean

1

2

1

.)(
1

1     ,1    (8) 

The probability distribution of returns (6) yields the following statistical estimators for the parameters 
σ and μ : 
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Now let us consider the LM in the case of multiple correlated assets. Let m denote the number of assets 
considered and let Sk(t) denote the price of the i-th asset at time t,  i=1,2,…,m. Let us define the asset 
returns: 
 

,,,2,1  ,  ,
)(
)(

log)( 0
0

mitt
tS
tS

tX
i

i
i K=≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=    (10) 

 
 
 

equation (4) and initial condition (5) are generalized to the case of m correlated assets as follows: 
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where iμ and iσ  represent the drift and the volatility of the i-th asset, respectively, and Wi(t) is a standard 
Wiener process, i=1,2,…,m. The correlation coefficient between Wi(t) and Wj(t), which we denote 
with ji,ρ , is assumed to be constant, i=1,2,…,m,  j=1,2,…,m. 
 
According to equation (11) the vector of stochastic variables [X1(t), X2(t), …, Xm(t)] has a multivariate 
normal distribution. Therefore in analogy with the case of single assets the parameters iμ , iσ , ji,ρ , 
i=1,2,…,m,  j=1,2,…,m, can be estimated from observed asset prices as follows. 
Let xi,k denote the realized return of the i-th asset over the time interval [tk-1, tk], i=1,2,…,m, k=1,2,…,n. 
Let us define: 
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The parameters iσ , iμ , ji,ρ , i=1,2,…,m,  j=1,2,…,m, can be estimated as follows: 
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The Heston Model 
 
Let us consider the HM in the case of single assets. According to the HM the stock price volatility is no 
longer assumed to be constant. Therefore equations (4)-(5) are rewritten as follows: 
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Let us define the variance V(t): 
 

,   ),()( 0
2 ttttV ≥= σ      (19) 

 
The variance V(t) is modelled as a stochastic process satisfying the stochastic differential equation: 
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with initial condition: 
 

.)( 00 vtV =       (21) 
 
In (20) κγϑ ,, are positive constant parameters, and W(1)(t) is a standard Wiener process. Let η  denote the 
correlation coefficient between W(t) and W(1)(t), η  is assumed to be constant. 
The stochastic differential equations (17), (20) with initial conditions (18), (21) constitute the Heston 
stochastic volatility model for a single asset (Heston, 1993). These equations can be generalized to the 
case of m assets as follows: 
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,,,2,1  ,0)( 0 mitX i K==      (24) 
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In (22), (23) the standard Wiener processes Wi(t) and Wi

(1)(t), i=1,2,…,m,  j=1,2,…,m, are assumed to be 
correlated by a constant correlation matrix. In particular let Λ denote the correlation matrix of the 2m-
dimensional Wiener process [W1(t), W2(t), …, Wm(t), W1

(1)(t), W2
(1)(t),…, Wm

(1)(t)], we can represent Λ as 
the following block matrix: 
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where , B are symmetric m m matrices and E is a mΣ × ×m matrix. We denote with ji,ρ the correlation 
coefficient between Wi and Wj, with ji,β the correlation coefficient between Wi

(1) and Wj
(1), and with 

ji,η the correlation coefficient between Wi and Wj
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Estimation of the Parameters of the Heston Model 
 
First of all we describe the calibration method used to estimate the parameters of the HM in the case of 
single assets, i.e. we consider equations (17)-(21). 
Let denote the probability density function of having X(t)=x given  X(t0)=0 and V(t0)=v0. 
In Dragulescu & Yakovenko, 2002 the following integral representation of 
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.)( 222 ωωκ i−+Γ=Ω      (31) 
 
Let us consider a set of equally spaced time values t0, t1, …,tn, and let us define Δt= tk – tk-1, k=1,2,…,n. 
Let xk denote the realized return of a given asset over the time interval [tk-1,tk], k=1,2,…,n. We estimate 
the parameters μηκγϑ ,,,, ,and the initial variance v0 using the procedure outlined below: 
 

1. We obtain the empirical probability density function of returns, which we denote with 
),( xt , as follows. Let us consider the set of realized returns pemp Δ { }nxxx ,,, 21 K , and let xmin  and 

xmax denote the minimum and the maximum of the set { }nx  respectively. We divide the 
interval [xmin , xmax] into N bins of equal size. Let x

xx ,,, 21 K

Δ denote the size of each bin, and let kx  
denote the center of the k-th bin, k=1,2,…, N. At the centers of the bins, we evaluate the empirical 
probability density function of returns as follows: 
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2. We treat the initial variance v0 as a parameter of the HM. More precisely let ),( xtp Δ denote the 

probability density function of having xttX =Δ+ )(  given 0)( =tX . Instead of formula (28), we 
consider the following one: 

 

,    
2
1),(

 

 

),,,( 0 ω
π

ω dextp vxt∫
∞+

∞−

ΔΦ=Δ     (33) 

 
that is we assume that the right hand side of equation (28) represents the probability density 
function of having  given xttX =Δ+ )( 0)( =tX at every time  (and not only at time 0tt ≥ 0tt =  
when the variance takes the value v0). 

 
3. We estimate μηκγϑ ,,, ,v0 by minimizing the mean-square deviation, msd, between the functions 

defined in (32) and (33) evaluated at the centers of the bins: 
,
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Note that in order to compute ),( kxtp Δ the evaluation of the integral appearing in formula (33) is 
required. In our numerical experience, a fast and accurate numerical approximation of this integral can be 
computed using Simpson's quadrature rule. 
 
Now let us consider the case of a portfolio of m correlated assets, i.e. equations (22)-(25). We note that 
the calibration algorithm described above, applied to every single asset of the portfolio, allows to estimate 
the parameters , i=1,2,…,m. Therefore the parameters of the HM that still need to be 
determined are the following elements of the correlation matrix (27): 

iiiiiii v0, ,,,,, μηκγϑ

,,,2,1 ,,,2 mjm KK =,1 ,, ,, ijiji =βρ and . ,,,2,1 ,,,2,1 ,, jimjmiji ≠== KKη  
 

The estimation of these parameters is a very difficult task. In fact, in the case of multiple correlated assets, 
neither an exact nor an approximate formula for the joint probability distribution of returns of the HM is 
available in the literature. As a consequence the correlation matrix Λ cannot be  estimated by fitting the 
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empirical probability distribution of portfolio returns with some analytical law. Therefore we resort to a 
heuristic procedure, whose description is given below. 
 
The correlation parameters ,,,2,1 ,,,2,1 ,, mjmiji KK ==ρ are evaluated using relations (16), that is the 
correlations among asset prices are determined as if asset returns were normally distributed. Finally the 
parameters ,,,2,1 , mjm K=,,2,1 ,, iji K=β and  ,, m,2,1 ,, iji K=η  ,,,2,1 mj K=  ,ji ≠ are obtained using 
a matrix completion method that exploits the particular block structure of the matrix (27). A description 
of this algorithm is presented below.  

Λ : Let us consider the Cholesky decomposition of the matrix 
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where C is a 2m× 2m  lower triangular matrix. Let us denote with ci,j the element of the i-th row and j-th 
column of the matrix C,  ,2,,2,1 mi K=  .2,,2,1 mj K= Since Λ has the block structure (26) the elements 
belonging to the first m rows and the first m columns of matrix C are obtained by Cholesky 
decomposition of matrix .  Σ
 
The elements of matrix C that still need to be determined, namely ci,k ,  
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It can be easily checked that, thanks to equations (38a)-(38c) the correlation coefficient between the 
return and the variance of the i-th asset is equal to ii,η ,  .,,2,1 mi K=  Note also that Equations (38d) 
ensure that ,  so that the matrix CCT is a positive definite symmetric matrix with 
unitary diagonal elements, that is a valid correlation matrix. It is important to observe that, according to 
equations (38a)-(38c), if 

1, =iiβ ,,,2,1 mi K=

|| , mimi −− < || , mimic −−η , that is the magnitude of the correlation between the price 
and the volatility of the i-th asset is smaller than | , the i-th row of matrix C has at most two 
nonzero elements, Moreover we note that if the correlation between the price and 
the volatility of a given asset is zero, then we would reasonably expect that the correlations of the 
volatility of that asset with the prices and the volatilities of the other assets are zero as well. This property 
is respected by the matrix completion algorithm (38a)-(38d).   In fact, given an integer i, if 

| c ,imi −− m

 .2, m,2,1 mm K++=i

 ,2,,2,1 mi K=
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0, =iiη  from equations (38a), (38b) we obtain 0, =+ jimc , ,1,,2,1 −+= imj K and hence from relations 
(27), (35) we have 0, =kiη ,  and ,,,2,1 mk K= 0, =kiβ , ,,,2,1 mKk =  .ik ≠  
 
Data 
 
We estimate the parameters of the HM for the following six stocks belonging to the Italian Stock 
Exchange: Autostrade SpA, Mediobanca SpA, Pirelli & C SpA, RaS Holding, Unicredito Italiano SpA, 
Snam Rete Gas. 
 
The set of historical data used to derive the empirical probability distribution of returns (32) consists of 
daily observed asset prices from 17 June 2002 to 15 June 2006. Note that we consider only historical data 
starting from June 2002 since we want to exclude from our analysis the crash of the Italian financial 
market due to September 11, 2001. In fact in order to take into account the effects of extreme and 
unpredictable events such as the the September 11, 2001 terroristic attacks, one should use more ad-hoc 
models of stock price dynamics, e.g. models with jumps in returns and in volatility (see Eraker, Johannes 
& Polson, 2003 and references therein). On the other hand we observe that for some of the stocks 
considered, the historical data are not available on time periods significantly longer than four years (for 
instance the Snam Rete Gas stock was not quoted on the Italian market before December 2001). We 
consider only returns on a daily basis, since lower observation frequencies are incompatible with a set of 
historical data spanning a time horizon of only four years. In fact we have found that the empirical 
probability distributions of returns computed using time lags longer than 10 days exhibit very irregular 
shapes. Note also that, since the set of historical data used is relatively small, we do not reject extreme 
values or bins with low occupation numbers (as done for instance by Daniel, Joseph & Bree, 2005, 
Dragulescu & Yakovenko, 2002, Prange, Silva & Yakovenko, 2004, Silva & Yakovenko, 2001). 
 
NUMERICAL RESULTS  
 
In this section we present and discuss the numerical results obtained using the calibration method 
described in Section 4. 
 

0,,,,, vμηκγϑThe values of the parameters  obtained for the six stocks considered are shown in Table 1. 
Note that in Table 1, as well as in the remainder of the paper, the parameters 0,,,, v, μηκγϑ are expressed 
in 1/year units. 
 
In Figure 1 we compare, for the Pirelli & C. SpA stock, the probability density function of daily returns 
obtained using the HM (solid line) and the empirical probability density function of returns (dotted line). 
Note that the probability density function of returns of the HM is computed using formula (28), where the 
values of 0,v,,,, μηκγϑ are those reported in the third row of Table 1, and  1=Δt day. Figure 1 shows 
also, for the Pirelli & C. SpA stock, the probability density function of returns obtained using the LM 
(dashed line), where the drift and volatility parameters are estimated using relations (9).  
 
We may note that the HM provides an excellent agreement with historical data and fits the empirical 
probability distribution of returns far better than the LM. In particular the HM describes the high peaks of 
the empirical distribution significantly better than the LM. Moreover, although the historical dataset used 
is probably too small to obtain a sharp description of extreme events, the HM captures the fat tails of the 
empirical distribution better than the LM. Similar results are obtained also for the other stocks considered. 
As an example we show in Figure 2 the probability distributions of returns (HM, LM and empirical) 
obtained for the RaS Holding stock. 
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Table 1: Parameters of the HM  
 

Number Name  μ v0  γ θ η κ 
1 Autostrade SpA 0.257 0.019 127.6 0.078 0.12 6.70 
2 Mediobanca SpA 0.151 0.060 40.30 0.220 0.00 8.30 
3 Pirelli & C. SpA -0.058 0.080 27.5 0.320 0.00 8.90 
4 RaS Holding 0.115 0.040 52.1 0.356 -0.07 11.3 
5 Unicredito Italiano SpA 0.098 0.012 210.0 0.140 0.04 11.6 
6 Snam Rete Gas 0.071 0.030 85.9 0.018 0.03 2.80 

This table shows the values of the parameters of the HM obtained for six stocks traded on the Italian market. 
 
Figure 1: Pirelli & C. SpA, Probability Distributions of Returns 
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This figure shows the probability density function of daily returns of the Pirelli & C. SpA stock. 
  
Figure 2: RaS Holding, Probability Distributions of Returns 
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This figure shows the probability density function of daily returns of the RaS Holding stock. 
 
Now let us consider the case of a portfolio composed by the six assets reported in Table 1. The six stocks 
considered are arranged in vector [ , whose components appear in equation (22), 
following the same order as in Table 1. Using the algorithm described in Section 4, we estimate the 
following correlation matrix: 

])(,),(),( 621 tXtXtX K
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The initial wealth of the portfolio has been equally distributed among the six stocks, so that every asset 
gives a relevant contribution to the value of the portfolio. The portfolio return at a given time t is 
measured as follows: 
 

,log
1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−t

t
P P

P
X      (36) 

In Figure 3 we show the probability distribution of the portfolio returns obtained using the HM, the 
probability distribution of the portfolio returns obtained using the LM, and the probability distribution of 
the realized portfolio returns. Note that the probability distribution of both the HM and the LM is 
computed by Monte Carlo simulation. In particular in the Monte Carlo simulation of the HM, the 
stochastic differential equations (22), (23) are discretized in time using the Euler-Maruyama scheme (see 
Kloeden & Platen, 1999). We clearly note that the HM provides a very good description of the realized 
portfolio returns and fits the empirical distribution of the portfolio returns considerably better than the 
LM. 
 
Figure 3: Portfolio of Six Stocks, Probability Distributions of Returns 
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This figure shows the probability density function of daily returns of a portfolio of six stocks traded on the Italian market. 
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CONCLUSIONS 
 
We have investigated the performance of the Heston stochastic volatility model in describing the 
probability distribution of returns both in the case of single assets and in the case of asset portfolios. In 
particular we have proposed a simple method to calibrate the HM based on an integral representation of 
the exact probability density function of asset returns derived by Dragulescu & Yakovenko (2002). In the 
case of multiple correlated assets, the correlation parameters are estimated using an ad-hoc matrix 
completion algorithm. 
 
Using the calibration method proposed in this paper the initial variance of asset returns is treated as an 
additional parameter of the model. Therefore it is not necessary to assume that the initial variance has 
stationary probability distribution (as done in previous works), and the value taken by the initial variance 
can be estimated.  
 
We have used the calibration algorithm presented in this paper to estimate the parameters of the HM for 
several stocks traded on the Italian financial market. These numerical experiments reveal that, both in the 
case of single assets and in the case of asset portfolios, our calibration method  provides an excellent 
agreement with historical time series data. Moreover the HM captures the kurtosis effect exhibited by the 
empirical probability distribution of returns and fits the empirical distribution of returns far better than the 
LM.  Finally we remark that the calibration algorithm proposed in this paper is simple to implement, so 
we believe that it is very suitable for practical applications. 
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