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ABSTRACT 

In the current environment of financial distress, many governments are likely to soon become major 
holders of financial assets, but the policy debate focuses only on the likelihood and extent of short-term 
market stabilization.  This paper shows that government intervention and propping up are likely to lead to 
long-term bubbles and even wildly chaotic behavior.  The discontinuities occur when the committed 
capital reaches a critical amount that depends on just two parameters: the market impact of trading and 
the target exposure percentage. 
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INTRODUCTION 

lobally, governments appear to be quickly becoming holders of enormous quantities of financial 
securities.  The main goals are to calm the markets, increase liquidity, and raise prices.  While the 
details are still unresolved, the vast majority of financial economists seem to support some sort of 

intervention.  But the government's buying power, whether or not it leads to a short-term stabilization of 
prices, can in certain circumstances described by this paper lead to a long-term bubble, or even chaos. 

Consider a financial institution that faces mark-to-market losses on its large position of illiquid financial 
instruments.  It can "prop up," or make additional market transactions that are small relative to its overall 
portfolio but, because of the illiquidity, have a large effect on the market price and therefore on the value 
of its entire portfolio.  In this way, the institution can appear to generate large profits from its existing 
position at a remarkably small cost. 

This paper presents a model of such mark-to-market propping up for a stylized financial entity aiming to 
hold a position in thinly traded derivatives with an exposure in fixed proportion to its capital.  The prices 
resulting from the entity's transactions show variety and complexity, ranging from traditional bubbles, to 
discontinuous gaps, to smooth hills, to infinite growth. 

Funds often allocate a certain portion of their capital to a particular investment class.  Whether it is a 
pension fund allocating half of its capital to bonds, a mutual fund allocating one-third of its capital to 
growth stocks, or a sovereign wealth fund allocating twenty percent of its capital to a particular currency, 
it is common to find fixed percentage targets for entire classes of securities, with the percentage changing 
relatively rarely. 

Consider an example of a hedge fund that trades only volatility swaps, which pay off the difference 
between the realized volatility of an underlying asset and the initial strike, multiplied by the notional of 
the swap, called the vega notional.  Suppose a $100 million hedge fund, which seeks to always be long 10 
percent of its capital in vega notional, is indeed long $10 million worth of vega notional.  It trades in fixed 
maturities of, let us suppose, five years.  After one year has elapsed, the mark-to-market profit of the 
hedge fund is equal to the product of $10 million and the difference between the weighted average of the 
realized volatility for the first year and the implied volatility of the remaining four years.  Because one-
fifth of the position has expired, the remaining vega notional is now only $8 million.  If the fund wants to 
maintain a 10% exposure to volatility, it needs to purchase some more volatility swaps. 

G 
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But what if the market implied volatility is no longer cheap?  Could it still make sense for the fund to 
purchase the swap?  Yes, it could, if the fund is big enough to cause a market impact by its trading.  
Suppose that by purchasing $2 million of new five-year vega, the hedge fund causes all implied 
volatilities to rise by one volatility point above fair value.  Then assuming the fund does no more trades, 
in five years it will lose $2 million on its last trade.  In the meantime, however, it will have caused a 
mark-to-market profit of $8 million, because its old volatility swaps would have been marked to the 
higher value too.  Over the next four years, it will lose all of that $8 million as well, since at the end, the 
realized volatility will be the fair value, and the marks at the end of the first year will be deemed, in 
hindsight, to be too high. The rest of this paper contains a literature review, the formal model definitions 
and dynamics, and an exploration and discussion of the simulations, followed by a conclusion. 

LITERATURE REVIEW 

The literature on bubbles is perhaps the oldest class of financial research.  Aristotle wrote of Thales who 
created a bubble in olive presses by cornering the market and selling at its peak.  Isaac Newton lost 
twenty thousand pounds in the South Sea bubble, famously complaining that he can “calculate the 
motions of heavenly bodies, but not the madness of people.”  These two early examples still represent the 
two primary modern approaches to understanding bubbles.   

Explanations of Thales-like bubbles assume relatively rational investors.  Blanchard and Watson (1982) 
show that bubbles can be consistent with rationality.  Jarrow (1992) finds bubbles can form if certain 
large traders can manipulate markets.  Abreu and Brunnermeier (2003) find bubbles can persist because 
of a synchronization problem between rational investors in timing their exits.   

Explanations of South Sea-like bubbles assume the existence of noise traders, combined with limits on 
arbitrageurs.  Shleifer and Summers (1990) show how even rational investors can predict bigger fools in 
the future and so push bubbles further in the hope that they will be able to get out before it bursts.  Many 
psychological biases seem able to drive noise trader behavior.  Scheinkman and Xiong (2003) show that 
overconfidence leads to bubbles.  Greenwood and Nagel (2008) find that the recent tech bubble was 
driven by younger investors.  Barberis, Shleifer, and Vishny (1998) show that naïve extrapolation and a 
conservatism bias lead to consistently predictable return patterns. This paper does not assume a particular 
psychological bias for the financial entities.  On the contrary, the entities act rationally given their 
constraints. 

Indeed, regardless of whether market participants are rational or not, experimental markets reliably 
replicate bubbles in laboratory conditions.  Porter and Smith (2003) review 72 such experiments and find 
that markets with a well-defined expected fundamental dividend value exhibit bubbles, which diminish 
with experience, and which seem to depend on investor uncertainty about the behavior of other traders 
rather than uncertainty about the fundamental value itself.  Hirota and Sunder (2007) suggest alternatively 
that short horizons and computational difficulty are to blame. 

It is possible to generate bubbles and crashes through explicit models of agent behavior.  For example, 
Corcos, Eckmann, Malaspinas, Malevergne, and Sornette (2008) introduce a deterministic, infinite-agent 
model in which agents change from bullish to bearish depending on the mood of their friends.  This 
model is able to generate a wide range of behavior from chaotic to super-exponentially growing bubbles 
followed by crashes to quasi-periodic behavior.  Wolfram (2002) describes a very simple idealized model 
of a market based on all entities repeatedly changing their mind depending on the decisions made by their 
two nearest neighbors in the prior period.  In a similar vein, Maymin (2008a) proposes the minimal model 
of complexity of financial security prices, requiring only a single investor trading a single asset, yet still 
generating bubbles, crashes, and complexity. 
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Relative to such agent-based models, the dynamics presented here do not depend on complexity arising 
from simple trading rules or changes in attitudes or beliefs, but rather focus on the results of the fixed 
portfolio allocation decisions of a single financial entity or group of financial entities.   

Furthermore, agent-based rules are typically applied to asset markets such as stocks or bonds, eschewing 
the more complicated derivatives markets, whereas the model presented here applies most easily to 
derivatives with fixed maturity dates and random realizations rather than perpetuities like stocks or fixed 
coupons like bonds. 

Indeed, research linking bubbles and derivatives is rare and often only an indirect link based on bubbles in 
the underlying asset.  For example, Cox and Hobson (2005) show that option pricing in the presence of an 
underlying bubble violates put-call parity among other things.  In contrast, this paper describes bubbles 
formed directly in derivative markets by the market participants. 

Similarly, financial research on chaos such as Hsieh (1991) has focused on the dynamics of the 
underlying asset processes, not on the chaos potentially caused directly through trading in markets for the 
derivatives themselves. 

MODEL DEFINITIONS AND DYNAMICS 

Definition 1: A standard maturity derivative security is one that is typically traded in the market for a 
fixed maturity of a particular number of years.   

The most obvious examples are credit default swaps, where new swaps tend to trade at five-year 
maturities and old swaps have maturities less than five-years.  Volatility and variance swaps can typically 
be traded for any maturity but one-year and two-year maturities are common as well.  Sometimes such 
swaps tend to expire on particular days such as to coincide with the expiration of a futures contract, so the 
maturity is a constant when rounded to the nearest year. 

Definition 2: A decomposable derivative security is one whose payoff can be expressed as: 

�
𝑁𝑁∆𝑡𝑡
𝑇𝑇 �𝑅𝑅𝑡𝑡;𝑡𝑡+∆𝑡𝑡 − 𝐾𝐾�

𝑇𝑇−∆𝑡𝑡

𝑡𝑡=0

 

where the derivative security has initial strike K and notional N and which pays off 𝑁𝑁�𝑅𝑅0;𝑇𝑇 − 𝐾𝐾� at 
maturity T, with 𝑅𝑅𝐴𝐴;𝐵𝐵 representing the realized value of the period from A to B.   

In other words, a decomposable derivative security is a sequence of forward-starting derivatives each with 
maturities Δt.  A typical example of such a security is a variance swap. 

Definition 3: A linear market impact model for a family of derivative securities with a flat term structure 
adjusts all future implied values by the same amount for a given amount of notional traded.  In particular, 
for a variance swap, 𝜎𝜎′ = 𝜎𝜎 + 𝜆𝜆𝜆𝜆, where σ′ is the new implied level, 𝜎𝜎 is the old implied level, V is the 
amount of variance swap notional purchased (a negative amount if sold), and 𝜆𝜆 is the impact. 

In other words, and simplifying to the language of volatility swaps, if you buy $10 million of vega, and if 
we assume as we will later that 𝜆𝜆 = 0.05, then you will have increased the remaining implied volatility by 
half of a volatility point.  If it had been a flat 20% implied volatility term structure, it will now be a flat 
20.50% implied volatility term structure. 
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Definition 4: A constant exposure fund is one that seeks to maintain an exposure to a standard maturity 
derivative equal to a fixed proportion of its capital at every period.   

A fund that aims to be 60% invested in equities and 40% in bonds is a constant exposure fund if one 
regards stocks as derivatives whose standard maturity is infinity and bonds as a derivative whose standard 
maturity is 30 years.  As the bond values accrete down, such a fund needs to purchase more new bonds to 
satisfy its exposure requirement. 

A fund that aims to maintain a 10% exposure to volatility will rebalance its volatility exposure every 
period to ensure that any profit it has earned is used to support new and larger positions and any losses it 
has incurred will result in a sale of new positions to offset the exposure of its existing positions. 

With these definitions, we can derive the evolution dynamics of a hedge fund's capital. 

Theorem 1: A constant exposure fund (or group of funds acting as one) with a target constant proportional 
exposure of κ to a decomposable derivative security that trades in the market with a standard maturity of 
T years, having a linear market impact model that increases the implied mark of all derivative securities 
by λ for each unit of exposure purchased, will, at time t + Δt, have capital 𝐶𝐶𝑡𝑡+∆𝑡𝑡 , average maturity 𝑀𝑀𝑡𝑡+∆𝑡𝑡 , 
and implied mark  𝜎𝜎𝑡𝑡+∆𝑡𝑡  given jointly by: 

𝐶𝐶𝑡𝑡+Δ𝑡𝑡 = 𝐶𝐶𝑡𝑡 +
𝐶𝐶𝑡𝑡𝜅𝜅Δ𝑡𝑡 �𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡+Δ𝑡𝑡 + 𝐶𝐶𝑡𝑡𝜅𝜅𝜆𝜆(𝑀𝑀𝑡𝑡−Δ𝑡𝑡)

𝑀𝑀𝑡𝑡
�

𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)
 

𝑀𝑀𝑡𝑡+Δ𝑡𝑡 =
𝑀𝑀𝑡𝑡𝑇𝑇Δ𝑡𝑡�𝜅𝜅�𝜎𝜎𝑡𝑡 − 𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡� − 1� − (𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)2�𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)�

𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)2 −𝑀𝑀𝑡𝑡 �𝑀𝑀𝑡𝑡 − 𝜅𝜅Δ𝑡𝑡�𝜎𝜎𝑡𝑡 − 𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡��
 

𝜎𝜎𝑡𝑡+Δ𝑡𝑡 =
𝜎𝜎𝑡𝑡𝑀𝑀𝑡𝑡 + 𝐶𝐶𝑡𝑡𝜅𝜅𝜆𝜆�Δ𝑡𝑡 − 𝜅𝜅𝜎𝜎𝑡𝑡𝑀𝑀𝑡𝑡 + 𝜅𝜅Δ𝑡𝑡𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡�

𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡) −𝑀𝑀𝑡𝑡
 

where 𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡  is the realized portion of the derivative for the period from time t to time t + Δt and C₀ is 
the fund's initial starting capital. 

Proof of Theorem 1: The proof follows from solving the following equations, which themselves follow 
directly from the assumptions and the definition of profit as the sum of the realized profit plus the implied 
profit: 

𝜆𝜆𝑡𝑡 = 𝜅𝜅𝐶𝐶𝑡𝑡  “Vega” definition 

𝜆𝜆�𝑡𝑡 = 𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡 − Δ𝑡𝑡
𝑀𝑀𝑡𝑡

 “Aged vega” 

𝜆𝜆𝑡𝑡+Δ𝑡𝑡 = 𝜆𝜆𝑡𝑡 + 𝜅𝜅Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡  New vega 

𝜎𝜎𝑡𝑡+Δ𝑡𝑡 = 𝜎𝜎𝑡𝑡 + 𝜆𝜆�𝜆𝜆𝑡𝑡+Δ𝑡𝑡 − 𝜆𝜆�𝑡𝑡� Market impact 

Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 =
𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡

�𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡�Δ𝑡𝑡 + 𝜆𝜆�𝑡𝑡(𝜎𝜎𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡) Profit for this period 
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𝑀𝑀𝑡𝑡+Δ𝑡𝑡 =
𝜆𝜆�𝑡𝑡(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡) + �𝜆𝜆𝑡𝑡+Δ𝑡𝑡 − 𝜆𝜆�𝑡𝑡�𝑇𝑇

𝜆𝜆𝑡𝑡+Δ𝑡𝑡
 

Average maturity 

𝐶𝐶𝑡𝑡+Δ𝑡𝑡 = 𝐶𝐶𝑡𝑡 + Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡  Definition of profit 

Substituting the definitions of 𝜎𝜎𝑡𝑡+Δ𝑡𝑡, 𝜆𝜆�𝑡𝑡, and 𝜆𝜆𝑡𝑡+Δ𝑡𝑡 from the earlier equations into the one for profit, we 
get: 

Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 =
𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡

�𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡�Δ𝑡𝑡 + 𝜆𝜆�𝑡𝑡(𝜎𝜎𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡) 

=
𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡

�𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡�Δ𝑡𝑡 + 𝜆𝜆�𝑡𝑡𝜆𝜆�𝜆𝜆𝑡𝑡+Δ𝑡𝑡 − 𝜆𝜆�𝑡𝑡� 

=
𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡

�𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡�Δ𝑡𝑡 + 𝜆𝜆�𝑡𝑡𝜆𝜆�𝜆𝜆𝑡𝑡 + 𝜅𝜅Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜆𝜆�𝑡𝑡� 

=
𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡

�𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡�Δ𝑡𝑡 + 𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡 − Δ𝑡𝑡
𝑀𝑀𝑡𝑡

𝜆𝜆 �𝜆𝜆𝑡𝑡 + 𝜅𝜅Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡 − Δ𝑡𝑡
𝑀𝑀𝑡𝑡

� 

Collecting terms gives the solution for Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 from which all others flow: 

�1 − 𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡 − Δ𝑡𝑡
𝑀𝑀𝑡𝑡

𝜆𝜆𝜅𝜅� Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 =
𝜆𝜆𝑡𝑡
𝑀𝑀𝑡𝑡

�𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡�Δ𝑡𝑡 + 𝜆𝜆𝑡𝑡2
𝑀𝑀𝑡𝑡 − Δ𝑡𝑡
𝑀𝑀𝑡𝑡

𝜆𝜆
Δ𝑡𝑡
𝑀𝑀𝑡𝑡

 

The "vega" definition in the proof represents the following.  If the fund has $100 million and is targeting a 
10% exposure to volatility, then the amount of vega it is carrying is $10 million.  This follows from the 
definition of a constant exposure fund. 

The "aged vega" is the amount of vega remaining after a period of time Δt has elapsed.  By 
decomposability, the progress of time has essentially expired the first Δt of the total 𝑀𝑀𝑡𝑡 maturity of the 
decomposable derivative security.  Hence the remaining exposure is just the fraction of the remaining 
maturity as applied to the initial exposure to the derivatives. 

The profit for any period is composed of two parts: the realized profit on the portion of the decomposable 
derivative that has essentially matured, and the implied profit on the portion of the decomposable 
derivative that remains.  The portion that has matured is 𝜆𝜆𝑡𝑡

𝑀𝑀𝑡𝑡
Δ𝑡𝑡 and the portion that remains is the “aged 

vega.” 

The average remaining maturity is a weighted average of the maturity that remained, weighted by the 
aged vega, and the standard maturity of the derivative, weighted by the new vega, or the additional 
amount of vega required to be purchased to maintain the constant-exposure assumption.  Since the new 
capital is simply the sum of the old capital and the profits, the new vega must be the same constant 
proportion κ of the new capital.  Since the old vega was that same proportion of the old capital, the new 
vega can be expressed as the sum of the old vega plus a proportion κ of the profits. 
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Note the discontinuities that can result when the coefficient of the left hand side of the equation for 
Π𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 is near zero: 

𝜆𝜆𝑡𝑡 =
𝑀𝑀𝑡𝑡

𝑀𝑀𝑡𝑡 − Δ𝑡𝑡
1
𝜆𝜆𝜅𝜅

 

𝐶𝐶𝑡𝑡 =
𝑀𝑀𝑡𝑡

𝑀𝑀𝑡𝑡 − Δ𝑡𝑡
1
𝜆𝜆𝜅𝜅2 

𝐶𝐶𝑡𝑡 ≈
1
𝜆𝜆𝜅𝜅2 

where the last approximation follows by noting that 𝑀𝑀𝑡𝑡 is approximately the same as 𝑀𝑀𝑡𝑡 − Δ𝑡𝑡. 

Denote by 𝐶𝐶𝑡𝑡∗ = 1/(𝜆𝜆𝜅𝜅2) this critical value of capital. 

The evolution of capital follows a quadratic fractional transformation.  In particular, its quadratic form is 
determined as the product of two affine ones.  Cambini, Crouzeix, and Martein (2002) show that such a 
transformation is pseudoconvex in certain circumstances.  The evolution of the capital can also be re-
written as follows. 

𝐶𝐶𝑡𝑡+Δ𝑡𝑡 = 𝐶𝐶𝑡𝑡 +
𝐶𝐶𝑡𝑡𝜅𝜅Δ𝑡𝑡 �𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡+Δ𝑡𝑡 + 𝐶𝐶𝑡𝑡𝜅𝜅𝜆𝜆(𝑀𝑀𝑡𝑡−Δ𝑡𝑡)

𝑀𝑀𝑡𝑡
�

𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)
 

=
𝐶𝐶𝑡𝑡𝜅𝜅Δ𝑡𝑡 �𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡+Δ𝑡𝑡 + 𝐶𝐶𝑡𝑡𝜅𝜅𝜆𝜆(𝑀𝑀𝑡𝑡−Δ𝑡𝑡)

𝑀𝑀𝑡𝑡
�+ 𝐶𝐶𝑡𝑡�𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)�

𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)
 

=
𝐶𝐶𝑡𝑡𝜅𝜅Δ𝑡𝑡�𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡+Δ𝑡𝑡�+ 𝐶𝐶𝑡𝑡2𝜅𝜅2𝜆𝜆𝑀𝑀𝑡𝑡−Δ𝑡𝑡

𝑀𝑀𝑡𝑡
+ 𝐶𝐶𝑡𝑡𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑡𝑡2𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)

𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)
 

=
𝐶𝐶𝑡𝑡�𝜅𝜅Δ𝑡𝑡�𝑅𝑅𝑡𝑡;𝑡𝑡+Δ𝑡𝑡 − 𝜎𝜎𝑡𝑡+Δ𝑡𝑡�+ 𝑀𝑀𝑡𝑡�+ 𝐶𝐶𝑡𝑡2𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡) �Δ𝑡𝑡𝑀𝑀𝑡𝑡

− 1�
𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑡𝑡𝜅𝜅2𝜆𝜆(𝑀𝑀𝑡𝑡 − Δ𝑡𝑡)

 

Though this model is expressed in terms of derivatives and assumes a constant exposure, it is 
representative of a wider class of possible models that result in hedge funds buying small amounts of 
some securities for poor future arbitrage returns to achieve larger current mark-to-market returns. 

SIMULATIONS AND DISCUSSION 

Let us consider a particular numerical example of this model.  Suppose we are looking at an 
amalgamation of a group of hedge funds totaling C₀ = $1 billion in capital, and that this capital is 
targeting κ = 10% of its capital as exposure to variance swaps.  Hence, initially it has $100 of vega 
exposure.  

(I use the term "vega notional" for convenience.  The exact terminology would be "variance swap 
notional" and both the realized and implied marks would be in variance terms, not volatility, but the 
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discussion flows easier if the terminology is that of volatility swaps.  An alternative way of reading this is 
to assume that volatility swaps are decomposable.) 

Suppose finally that the default maturity of new swaps is 5 years and that a $1 million purchase of new 
swaps increases all implieds by λ = 0.05 volatility points per $1 million.  The particular numbers do not 
matter since similar results follow at some point so long as λ > 0 and κ > 0.  Nevertheless, these numbers 
do represent ballpark estimates of reality.  An online demonstration allows interaction and exploration of 
this model (Maymin, 2008b). 

Figure 1 shows the evolution of the capital over time, where for convenience the capital, vega, and λ are 
all expressed in millions.  This figure shows the prototypical evolution of capital under the model.  
Capital initially increases as the fund purchases more of the derivative both to replace its expiring 
exposure and to generate current mark-to-market profits at the expense of future arbitrage losses until the 
realized losses from expiring exposure gets so large that the fund is forced to sell and liquidate.  The 
figure shows a gentle, smooth bubble. 

Figure 1: Simulated Evolution of Capital Starting with Initial Capital of $1 billion 

 

This figure represents the evolution, in time steps of 1/100's of a year, of the capital of a hedge fund that invests 10% of its initial $1 billion in 
variance swaps that have a default maturity of 5 years and experience market impact equal to 0.05 variance points per $1 million notional trade.  
The initial implied is 20% and the realized is constant at 20%.  The capital peaks above $1.75 billion after about three years (300 time steps), 
and then decreases rapidly until bankruptcy around year 6 (600 time steps). 

Discontinuities 

Recall the critical value of capital 𝐶𝐶𝑡𝑡∗ = 1
𝜆𝜆𝜅𝜅2 at which discontinuities can occur and note that the critical 

value occurs when 𝐶𝐶𝑡𝑡∗ = 1
0.05/$1,000 ,000 (0.1)2 = $2 billion.  The capital never reaches the critical value and so 

the evolution remains smooth.  But if the initial capital were just one percent higher and started out at C₀ 
= $1.01 billion, then its evolution would experience several discontinuities, including a big gap down 
after around two and a half years.  See Figure 2. 

Not all evolutions are necessarily bubbles either.  If the initial capital were just two million dollars higher, 
a mere 0.20% higher than the previous example, so that C₀ = $1.012 billion, then the capital of the hedge 
fund would continue to grow without bound.  See Figure 3. 

Additionally, it is not necessarily the case that there will only be one bubble.  If we start from our base 
case and simply make the initial implied volatility 17% instead of 20%, so that the volatility appears to be 
3% cheap to start, then the profits rise quickly, form a discontinuity, drop by approximately 75%, then 
start a new, slower, and more continuous bubble.  See Figure 4. 

 

89



P.  Maymin   The International Journal of Business and Finance Research  ♦ Vol. 3 ♦ No. 2 ♦ 2009 

 

 

Figure 2: Simulated Evolution of Capital Starting with Initial Capital of $1.01 billion 

 

This figure represents the evolution, in time steps of 1/100's of a year, of the capital of a hedge fund that invests 10% of its initial $1.01 billion in 
variance swaps that have a default maturity of 5 years and experience market impact equal to 0.05 variance points per $1 million notional trade.  
The initial implied is 20% and the realized is constant at 20%.  The capital peaks above $2 billion after about two and a half years (250 time 
steps), and then gaps down and decreases until bankruptcy around year 6 (600 time steps). 

Figure 3: Simulated Evolution of Capital Starting with Initial Capital of $1.012 billion 

 

This figure represents the evolution, in time steps of 1/100's of a year, of the capital of a hedge fund that invests 10% of its initial $1.012 billion 
in variance swaps that have a default maturity of 5 years and experience market impact equal to 0.05 variance points per $1 million notional 
trade.  The initial implied is 20% and the realized is constant at 20%.  The capital continues to increase indefinitely, reaching more than $17.5 

Figure 4: Simulated Evolution of Capital Starting with Initial Implied Volatility of 17% 

 

This figure represents the evolution, in time steps of 1/100's of a year, of the capital of a hedge fund that invests 10% of its initial $1 billion in 
variance swaps that have a default maturity of 5 years and experience market impact equal to 0.05 variance points per $1 million notional trade.  
The initial implied is 17% and the realized is constant at 20%.  The capital peaks at nearly $2.5 billion after about one and a half years (150 time 
steps), and then gaps down to about $500 million in capital.  From there, it follows a smooth bubble back up to about $1 billion in year five (500 
time steps) and decreases gradually towards bankruptcy. 
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Because the evolution around the critical value is so fragile, different discontinuities can result from even 
slight changes to the time step or other parameters. 

Possible Extensions 

The model can easily be extended to allow for alternative representations of market impact.  For example, 
instead of a linear market impact model, we could use one whose impact is measured by the square root 
of the traded vega.  However, that removes neither the jumps nor the possibility of infinite wealth, and 
apart from changing the exact times of bubbles and jumps, it does not aid in the intuition behind the 
model. 

Similarly, the model can be extended to allow the market impact to dissipate over time, or to affect the 
realized portion as well as the implied portion.  Indeed, there is good reason to assume that an increase in 
the implied will spill over into the realized simply because of the hedge fund's increased hedging activity.  
As more hedge funds buy volatility, volatility tends to dampen under their hedging.  As more hedge funds 
sell volatility, volatility tends to increase under their hedging.  Still, these enhancements to the model 
simply mitigate the effect over time but do not remove the fundamental discontinuities. 

The model assumptions of direct decomposability and constant exposure may be relaxed.  For example, 
mortgage-backed securities are not typically decomposable, but they do experience time decay in a non-
linear way.  Funds also may have a range of exposure they are willing to bear.  The pure linearity of 
decomposition here is just a convenient approximation to the aging process of virtually all non-perpetual 
securities. 

Similarly, though the illustrative example presented here was of a hedge fund trading volatility, the model 
applies equally well to a group or sector of hedge funds, or pension funds, or sovereign wealth funds, 
where allocations as a percentage of capital can be sticky even when the individual entities may not be 
because the risk of the entire securities held by those kinds of entities may be a fixed percentage, even 
though the individual entities allocate it different among themselves.  As an example, by some anecdotal 
estimates, about 80 percent of the convertible bonds that were issued in the late 1990s and early 2000s 
were held by hedge funds; even if no particular hedge fund tried to hold a fixed proportion, the market 
was such that the overall amount held by hedge funds in total remained approximately constant. 

CONCLUSION 

What are the potential long term effects of consistently propping up?   I present a model of financial 
entities seeking to maintain a constant exposure to decaying securities that engage in propping up and I 
find that they can generate a bubble.  In most cases, the bubble can be a smooth runup followed by a 
smooth dropdown, but around certain critical capital values, discontinuities can result.  Furthermore, the 
critical capital value depends only on two parameters: the market impact of trading new derivatives, and 
the proportional target exposure. 

The implications for investors are that realized lower market volatility in such markets may be a 
temporary illusion hiding the possibility of a chaotic crash, and that the amount of capital committed to 
the strategies can provide valuable information to the extent the critical values can be calculated. 

With the current environment of global government intervention into private markets, whether by 
purchasing outright equity stakes or establishing a portfolio of bad assets, the long-term consequences 
may not be adequately addressed or even considered.  This is, after all, an "emergency" situation.  But the 
proposed cure may be worse than the disease, and if the level of governmental intervention reaches the 
critical value, defined above as a function of the market impact and the allocation percentage, it is 
essentially unpredictable what may result. 
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