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ABSTRACT 
 
As institutional investors have become more aggressive in deploying their capital, fund managers have 
become more creative with their product offerings.  In this paper, we consider a new institutional fund of 
mutual funds, a portfolio that combines the “best-idea” stocks from two underlying primary funds.  The 
sponsor of this portfolio has chosen to weight all of the stocks equally, even those chosen by both of the 
underlying funds’ managers.  However, stocks chosen by both managers may be more likely to 
outperform.  We propose an alternative weighting scheme, where these “confirmed” stocks are weighted 
more heavily.  We show that this overweighting strategy leads to a higher expected portfolio return than 
does the equally weighted scheme used by the sponsor. 
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INTRODUCTION 
 

s the interest rate environment has become more challenging and investment products have 
become more sophisticated, institutional portfolio managers have become increasingly aggressive 
in their search for superior returns.  Many have turned to funds of funds (FOFs), since these 

embody the conventional institutional wisdom that active risk should be diversified to improve portfolio 
performance. 
 
In this paper, we consider a new fund-of-funds product that combines stocks from two underlying mutual 
funds: an active fundamental fund (itself composed of several large-cap portfolios) and a quantitative 
fund (a large-cap enhanced index fund, again composed of several underlying portfolios).  The new 
product is a “best ideas” portfolio, created using the twenty-five most overweighted and widely held 
stocks from each of the component funds.  The idea is to skim the cream from each fund, combining the 
results to diversify active risk.  The resulting portfolio is expected to generate a superior risk-return 
profile. 
 
In this paper, we evaluate the proposed weighting scheme for this new fund-of-funds.  As proposed, the 
institutional investor is free to choose the relative weighting for each of the underlying funds (e.g., 
50%/50%; 60%/40%).  However, the stocks in the funds will not be double-counted: any stock occurring 
in both the fundamental fund and the quantitative fund will be counted only once.  Thus, if one stock is 
held in common, there will be only 49 different stocks, each of which (in the 50%/50% case, on which we 
will focus, and which is highlighted by the sponsor) will be weighted at 1/49th of the portfolio. 
 
Such a weighting scheme discounts the extra vote of confidence that a shared stock receives.  If our 
underlying funds’ managers are truly skilled, is it not more likely that a stock is “good” if they both 
choose it?  Would we not be better of by weighting such “confirmed” stocks more heavily than those that 
received only one vote? 
 
In this paper, we consider such an alternative “confirmation” weighting system, and compare it to the 
proposed equally weighted scheme.  We find that, given simple assumptions, the proposed portfolio is 

A 
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likely to underperform our alternative.  Stocks chosen by both managers are more likely to perform well, 
and should be overweighted in the overall portfolio. 
 
The paper proceeds as follows.  We first review the literature that bears on the weighting schemes for 
funds-of-funds.  We then develop the model, first describing the weighting schemes for the proposed 
equally weighted portfolio and our alternative, then considering the relative probabilities that a stock is 
good, given that it is chosen by one or both managers.  Using this framework, we then determine the 
returns we expect from the two weighting schemes.  Finally, before concluding, we relax some of our 
basic assumptions, considering different combinations of the underlying funds and different relationships 
between the managers’ choices.   
 
RELEVANT LITERATURE 
 
We are concerned with the proposed weighting scheme for a fund of actively managed mutual funds.  Our 
work is therefore informed by literature on the value of active management and on the efficacy of creating 
funds of funds.  More directly related, of course, would be studies evaluating the relative weightings of 
funds within larger portfolios.  Given the dearth of research on this point, however, we will consider 
studies of index weights used for benchmarking hedge funds.  (Many of the studies we discuss involve 
hedge funds, which are relevant here because the active—and expensive—strategy we are considering is 
designed for the same institutional investors who employ hedge funds.)  In this section, then, we briefly 
consider three strands of research: the potential for excess returns from active management; the potential 
improvement of those excess returns from the creation of portfolios of actively managed funds; and the 
prevalence of various weighting schemes for measuring those excess returns using hedge fund 
benchmarks.   
 
A lot of fees ride on the belief that active management can deliver superior performance, and, as a result, 
the industry literature is generally supportive of the idea.  Waring and Siegel (2003) provide a good 
summary of the rationale for active management, explaining how, “[u]nder a couple of fairly easily 
satisfied conditions, you can beat the market”: “As long as the market is not completely efficient (and we 
believe that none are) and as long as there are native differences in human intelligence and skill levels (of 
course there are), some managers will outperform through real skill, not just by virtue of random 
variation” (emphasis original).  The sponsor of the fund-of-funds that we are considering similarly 
“fundamentally believe[s] in the value of active management,” so that, “over time, our funds will deliver 
performance benefits” (Wainscott, 2005).  Anson (2003) is also enthusiastic, noting that hedge fund 
indexes (which he describes as indexes of “almost pure bets on the skill of a specific manager”) exhibit 
higher Sharpe ratios than do traditional asset classes.  While—given the skewed nature of hedge fund 
returns—Sharpe ratios may not be the best performance assessment metrics for them (see Malkiel and 
Saha, 2005), Anson’s work nonetheless demonstrates the profound institutional enthusiasm for active 
management. 
 
The academic literature is less convinced of the efficacy of active management.  For example, Malkiel 
and Saha (2005) adjust hedge fund index returns for various biases (such as backfill and survivor bias), 
and find that “after correcting for these biases, hedge fund returns appear to be lower than the returns 
from popular equity indexes and look very similar to mutual fund returns.”  On the other hand, Kosowski, 
Naik, and Teo (2007) use a bootstrap method to rank hedge funds by their (Bayesian posterior) alpha t-
statistics, and find persistent, superior returns.  There is, therefore, some academic support for the benefits 
of active management. 
 
However, when considering the potential of our sponsor’s strategy in particular, we must first clarify 
what, specifically, is “active” about its management.  The sponsor of this FOF is selling its ability to 
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choose successful underlying fund managers.  When we develop our model, we will assume that it has 
been successful at this task.   
 
It is important to recognize that funds of active funds involve two levels of active management: security 
selection at the underlying fund level, and fund selection at the portfolio level.  In this paper, we are 
concerned only with the second of these—fund selection.  Gehin and Vaissie (2004) emphasize that the 
value-added from funds-of-funds requires that portfolio managers exhibit “excellent fund picking ability” 
(emphasis added), and that these managers concentrate their efforts on this task.  The sponsor of our fund 
concurs about its mission, defining its job as “find[ing] skilled money managers with great stock selection 
skills” (Frank Russell, 2005). 
 
FOF managers—like our sponsor—advertise the active processes that are supposed to generate this 
success.  For example, Waring and Siegel (2003) describe their “manager structure optimization” process, 
in which they advise portfolio managers to treat each of their underlying fund managers “like a stock”: 
they should describe the expected excess return and active risk of each fund manager, characterize the 
correlations among the managers’ performance, then utilize a manager “efficient frontier.”  Similarly, 
consultant Wilshire Associates has described its general “manager due diligence” as a five-step evaluation 
that draws on both external and proprietary sources to evaluate fund managers along 41 “key criteria”  
(Napoli, 2004; see also Foresti, 2005).  When discussing their evaluation of fund-of-fund managers in 
particular, Wilshire emphasizes those managers’ skills at picking and monitoring underlying fund 
managers.  We stress this point because, if our sponsor is successful at its job, then it has chosen skillful 
managers.  We should be able to take this skill as given when evaluating the weighting scheme the 
sponsor has chosen for the FOF.   
 
While our analysis does take this skill as given, there are caveats.  In order for our portfolio manager to be 
able to choose successful fund managers, there first must be successful fund managers, and then our 
sponsor must be able to identify them.  Thus, both levels of active management must be successful.  
However, the literature suggests that, for at least three reasons, this success is neither guaranteed nor 
sufficient for a profitable investment.  
 
First, we assume that our underlying fund managers are good stock pickers.  While the professional 
literature touts active management, its great expectations to not extend to all asset classes.  Our funds’ 
stocks are chosen from the large-cap domestic equity universe, which is acknowledged to be a difficult 
space for active managers.  Most of the professional literature advises that skilled managers are best 
deployed into markets generally viewed as less efficient. Indeed, Bonafede, Foresti, and Toth (2004) say 
that, in general, “[a]n experienced fund-of-funds manager adds value by identifying and gaining access to 
the top managers in an industry that is quite inefficient, while avoiding costly blowups.”  (For a similar 
industry argument, see Anson, 2003; Khandani and Lo, 2007, provide an academic argument.)  However, 
the large-cap domestic equity space is “acknowledged as the most efficient asset class and is the most 
challenging for active managers” (Wainscott, 2005). 
    
Second, we assume that our manager can identify these successful stock pickers.  However, as Gehin and 
Vaissie (2004) note, “an overwhelming proportion of [fund of hedge fund] managers do not have any 
fund picking ability.”  Similarly, Malkiel and Saha (2005) find that, while “fund of funds managers will 
often claim that the manager can select the best hedge funds for inclusion in the portfolio,” their results 
show that FOFs perform much worse than the average fund.  “Clearly, the typical Fund of Funds is not 
able to select the best performing individual Hedge Funds.”  
 
Finally, even if our sponsor can identify superior stock pickers, that does not necessarily imply that the 
FOF will outperform.  For example, Kosowski, Naik, and Teo (2007) do not even include FOFs in their 
performance tests, since “it is well known that Funds of Funds have lower average returns than individual 
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hedge funds.”  This may have nothing to do with the efficacy of active management; instead, these 
authors suggest that the poor performance could be caused simply by the extra layer of fees charged by 
the FOF managers.  Bonafede, Foresti, and Toth (2004) present a similar analysis. 
 
While we acknowledge these caveats about the general strategy of the proposed FOF, we begin our 
analysis at a much later stage.  Granting our sponsor the benefit of the doubt about its skill, its fund 
managers’ skill, and its fee structure, we ask:  Even if a FOF manager can choose the best-performing 
underlying funds, how should he weight those funds?  Our sponsor has already selected two underlying 
funds, from which it will identify the most overweighted stocks.  In the new portfolio, each of these 
chosen stocks will be equally weighted, including stocks chosen by both underlying managers.  Our 
purpose is to consider whether a heavier weighting for these “confirmed” stocks could improve the FOF’s 
performance. 
 
There is some hedge fund literature that might shed light on this question.  It is only obliquely helpful, 
however: we would prefer literature specific to mutual funds, but, in general, FOFs are not as common 
among mutual funds as they are among hedge funds (Fung and Hsieh, 2000).  We would also prefer 
considerations of weighting within FOFs; however, the literature concentrates on weighting schemes used 
to create hedge fund benchmarks, not specific funds.  Even these benchmark studies are difficult to apply 
to our situation, since hedge fund reporting is subject to numerous biases that do not apply to mutual 
funds (such as self-selection bias, backfill bias, and end-of-life reporting bias).  However, we can use the 
hedge fund benchmark literature to demonstrate how common equal weighting is in the active, 
institutional fund world, rendering our sponsor’s choice of this weighting strategy unsurprising (if 
uninspired).  
 
Equal weighting is essentially the default position for hedge fund FOF indexes.  For example, Anson 
(2003) notes that equally weighted hedge fund indexes are not overly sensitive to large funds or “flavor-
of-the-year” funds.  Thus, he notes that “[m]ost hedge fund index providers argue that a hedge fund index 
should be equally weighted to reflect fully all strategies.”  Of the ten benchmarks he studies (and the 
eleven studied by Gehin and Vaissie, 2004), seven are equally weighted (and one more is calculated using 
both equal and asset weights).  Similarly, all of the averages of hedge fund performance studied by 
Malkiel and Saha (2005) are equally weighted. 
 
When considering hedge fund benchmarks, however, there is a tension between describing current funds’ 
performance and modeling the investable universe.  As Fung and Hsieh (2000) note, the “observable” 
proxy for the hedge-fund market portfolio is equally weighted, since a market value-weighted index 
would require a complete record of hedge fund performance and asset data, which does not exist 
(“…assets under management are frequently incomplete or simply not available in hedge fund databases, 
so the equally weighted construct is the only proxy that can be calculated from individual hedge funds”).  
However, Gehin and Vaissie (2004) point out that matching an equally weighted index would require an 
unlikely contrarian strategy (selling winners to buy losers), and almost certainly cannot describe the true 
performance of an industry in which 75% of assets are concentrated in 25% of the funds.  Nonetheless, 
Amo, Harasty, and Hillion (2007) use equal weighting when analyzing the terminal wealth generated 
from randomly selected hedge funds (and find that their nonparametric approach suggests that single 
hedge funds are much riskier than usually supposed). 
 
The lesson from this benchmark literature is that equal weighting is a common institutional construct.  
Combined with conventional wisdom such as Waring and Siegel’s (2003)—who note that traditional 
managers often hold “more or less equal weighted” portfolios—the weighting scheme chosen by our FOF 
sponsor is unsurprising.  But does it offer the optimal combination of the stocks of the underlying funds?  
We begin to explore this question in the next section. 
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THE MODEL 
 
Weighting Schemes 
 
In this section, we clarify the distinctions between the new portfolio’s proposed weighting scheme (the 
“equally weighted” portfolio) and our alternative (the “confirmation” portfolio).  We will create portfolios 
of two underlying funds, fund 1 and fund 2.  Assume that there are n1 and n2 stocks chosen from each 
fund, respectively, so that the maximum number of stocks held in each of our portfolios is (n1 + n2) ≡ N.  
However, of these N stocks, s are chosen from both funds.  (We will call  these the “shared” stocks.)  
Thus, there are (N - s) different stocks chosen from both funds, but only (N – 2*s) ≡ u “unique” stocks 
chosen from only one fund.  For example, if n1 = n2 = 25, and one stock is chosen from both funds, then N 
= 50, s = 1, and u = 48.  Twenty-four unique stocks are chosen from each underlying fund.  The total 
number of different stocks held in our portfolio, (N - s), is 49.   
 
We will create two portfolios of these funds, using two different weighting schemes.  For the 
“confirmation” portfolio, we will weight each stock in each fund by [1/N].  This means that the s stocks 
held in both funds will be treated as separate assets, and therefore will be weighted twice, giving each a 
total portfolio weight of [2/N].  In the “equally weighted” portfolio, we will count each stock only once, 
even if it is held in both funds.  We will therefore have (N-s) different stocks, each weighted by 1/(N-s).  
For 0 < s < N, the equally weighted portfolio will overweight the unique stocks and underweight the 
shared stocks, relative to the confirmation portfolio.  This is illustrated below in Figure 1.   
 
Figure 1:  Relative Weights of Unique and Shared Stocks in the Two Portfolios 
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In the figure, the smooth curves show the weights for the portfolios’ unique stocks, while the boxed curves show the weights for the shared stocks.  
The equally weighted portfolio underweights the shared stocks and overweights the unique stocks, relative to the “confirmation” portfolio. 
 
We want to determine the conditions under which the equally weighted portfolio will outperform the 
confirmation portfolio.  To do this, we must first characterize the returns of the portfolios.  For the 
confirmation portfolio, return can be written as: 

R CONF = 
N
1

 [∑ ∑= =
+

u

i

s

k ki RR
1 1

*2 ],               (1) 

 
where the Ri are the returns for the (N-2*s) unique stocks, and the Rk are the returns for the s shared 
stocks.  For the equally weighted portfolio, return is: 
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We can use these characterizations to describe the situations in which the equally weighted portfolio will 
outperform the confirmation portfolio.  This will happen when REW is greater than RCONF, so that: 
 
(REW – RCONF) > 0,                 (3) 
 
which implies:            
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Rearranging (5), we find that this simplifies to the straightforward requirement that 
 
s*[∑=
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Using our example values for s and N, this implies that the equally weighted portfolio will outperform the 
confirmation portfolio if: 
 
(sum of returns on 48 unique stocks)  > 48*(return on stock held by both funds) 
 
Thus, if the average return for the 48 unique stocks is greater than the return for the one shared stock, we 
are better off with the equally weighted portfolio.  But is it likely that the stock chosen by both fund 
managers is no better than the ones that were chosen only once?  We consider this question in the next 
section. 
  
Probabilities 
 
We now consider a possible “confirmation effect” from having both managers choose the same stock.  
Let us assume that there are nT different stocks in the relevant universe, from which both managers will 
pick.  These stocks, Si, are either “good” (G) or “bad” (B): Si ∈ (G, B); i=(1…nT).  (We will define 
“good” and “bad” more carefully in the next section.)  There are nG “good” stocks and (nT – nG) ≡ nB 
“bad” ones, so that the relative proportions of good and bad stocks are (nG/nT) ≡ pG and (1- pG) ≡ pB, 
respectively.  The unconditional probability that a stock chosen at random will be good is therefore pG, 
and the probability that a specific good stock, say stock Q, is chosen, is prob(Si=Q) = prob(Si=Q∩Si∈G) 
= prob(Si=Q|Si∈G)*prob(Si∈G) = (1/nG)*pG = 1/nT.  This is the same as the unconditional probability 
that a specific bad stock will be chosen. 
 
However, let us also assume that our managers are better stock pickers than average.  The probability that 
one of them will choose a good stock is greater than pG, say (pG + ε) (where [1-pG] > ε > 0).  Now, the 
probability that one of our managers will choose a specific good stock is (pG + ε)*(1/nG), which is greater 
than the probability that a given bad stock is chosen, (1- pG - ε)*(1/nB). 
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We will define prob[ch(x, Si)] as the probability that x of our managers (where x ∈ [0, 1, 2]) have chosen 
a specific stock, Si.  (For notational simplicity, we will abbreviate this to simply ch(x).)  Thus, 
prob(ch(1)|Si∈G) ≈ 2/nG (since a given stock could be chosen by either of our two managers), and 
prob(Si∈G|ch(1)) = (pG+ε).  Using this notation, we can determine the probability that a stock is good, 
given that it is chosen by both managers, as: 
 
prob(Si∈G|ch(2)) = prob[Si∈G∩ch(2)]/prob(ch(2)) 
 

=  [prob(ch(2)|Si∈G)*(pG+ε)]/prob(ch(2))            (7) 
 
If we assume that the choices by the two managers are independent, then the probability that a given stock 
is chosen by both managers is simply (1/nG)2.  Thus, we have: 
 
prob(Si∈G|ch(2)) = [(1/nG)2*(pG+ε)]/prob(ch(2))             (8) 
 
Expanding the denominator, this becomes: 
 
prob(Si∈G|ch(2)) =  
 

[(1/nG)2*(pG+ε)]/[prob(ch(2)|Si∈G)*(pG+ε) + prob(ch(2)|Si∈B)* (1-pG-ε)] 
    
=  [(1/nG)2*(pG+ε)]/[(1/nG)2*(pG+ε) +(1/nB)2*(1-pG-ε)]            (9) 
 
Simplifying, we find: 
 

prob(Si∈G|ch(2)) = 22
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 ≡ pG2.        (10) 

 
To evaluate the relative value of the two portfolio weighting schemes, we need to determine whether this 
probability is greater than the probability that a stock is good, given that it is only chosen by one manager.  
That is, does having both managers choose a specific stock provide some additional confirmation that the 
stock is good? 
 
Comparing pG2 to (pG+ε), we find that confirmation is indeed valuable: as long as nB > nG, 
prob(Si∈G|ch(2)) > prob(Si∈G|ch(1)).  We can see this is Figure 2.  In this figure, we have assumed that 
the number of bad stocks stays constant at 100, and have plotted the relative probabilities that a stock is 
good—given that it is chosen by one or both managers—against a changing number of good stocks.  
(Note that this implies that pG rises as we move to the right across the graph, so that the unconditional 
probability that a stock is good is increasing—this is what is driving the bottom curve.)  As long as nG < 
nB, the confirmation effect holds.  This effect is particularly pronounced when the difference in the 
numbers of the two types of stocks is great (as we might expect it to be in the real world). If we assume 
instead that nT is constant, so that nB decreases as nG increases, the shape of the relationship is different, 
but the effect is the same: confirmation has value as long as nG < nB. 
 
Since the confirmation portfolio weighting scheme incorporates this additional vote of confidence by 
weighting shared stocks more heavily, we might expect it to perform better than the equally weighted 
portfolio.  We will explore this prediction in the next section. 
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Figure 2: Relative Probabilities That a Chosen Stock is Good, Given That nB is Fixed 
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In this  figure, we assume that ε is .05 and that the number of bad stocks is fixed at 100.   As the number of good stocks added to the universe 
increases, the probability that a chosen stock is good changes, rising if the stock is chosen by one manager, and falling if chosen by both. 
 
Putting It All Together: Expected Excess Returns 
 
Now that we have characterized both the two weighting schemes and the probabilities that a chosen stock 
is good, we can compare the expected returns from the two portfolio types.  To simplify the discussion, 
we will evaluate expected excess returns to the portfolios, α.  This is consistent with the stated goal of the 
strategy, which is “designed for alpha generation in domestic equity portfolios” (Junkin, 2007a).   
 
α is a standard metric in portfolio analysis.  Its original incarnation was Jensen’s, who defined α as a 
portfolio’s return above that predicted by the CAPM.  The concept has been elaborated on and expanded 
since (for example, it has been expressed in continuous time, linked to a K-factor model, and recast in a 
Bayesian posterior form; see Bodie, Kane, and Marcus, 2008; Nielsen and Vassalou, 2004; Lo, 2007; and 
Kosowski, Naik, and Teo, 2007).  For our purposes, we can abstract from the specific form of the 
underlying index model; however, our focus on α does require an assumption.  Since we are considering 
adding a “satellite” to a diversified core portfolio, theory and practice assert that we should be comparing 
portfolios based on their information ratios, the ratios of alpha—active return—to active risk (see Bodie et 
al., 1993; Kosowski et al., 2007; and Bonafede et al., 2004).  We will therefore assume that the active 
risks in the confirmation and equally weighted portfolios are comparable, allowing us to concentrate only 
on return.  (The actual risks of the two underlying funds is comparable: each has “12-month excess rolling 
risk” of approximately 2.8%; Junkin, 2007b.  Of course, this does not imply that the two fund-of-fund 
portfolios we are considering will have the same risk.  However, for example, the higher is the correlation 
between the two funds, the more likely is this result to hold.)  
 
Since the average excess return in the market is zero, the unconditional expected excess return for a stock, 
E(αi), in equilibrium, is zero.  However, we can now define a “good” stock as one with a positive αi for a 
given period, and a good fund manager—like ours—as someone who has above-average skill at 
identifying such stocks.  Defining the average excess return for good stocks as Gα  and the average excess 

return for bad stocks as Bα , it must be that 
 
0 = pG* Gα  + (1-pG)* Bα ,              (11) 
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so that: 
 

Bα   = -pG* Gα /(1-pG)   < 0.           (12) 
 
Now, we can define the expected return on a stock, given that it is chosen by one of our fund managers, as 
(pG+ε)* Gα  + (1-pG-ε)* Bα ; this will be the expected return for the u unique stocks.  If the stock is chosen 

by both managers, its expected return is pG2* Gα  + (1- pG2)* Bα ; this is the expected return for the s 
stocks held in common.  Substituting these expected stock returns into equations (1) and (2), we find the 
following expressions for expected portfolio returns for the confirmation and equally weighted strategies: 
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In Figure 3 below, we graph these expected returns assuming n1 = n2 = 25, pG = .1, nT = 100, ε = .05, and 
αG = .01. 
 
Figure 3: Expected Returns for the Two Portfolio Weighting Schemes 
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The figure shows that the expected returns for the confirmation portfolio exceed those for the equally weighted portfolio, unless the portfolios are 
either identical or completely distinct. 
 
The expected return for the confirmation portfolio is higher unless the two portfolios are either identical 
or completely distinct.  As long as there is only partial overlap, taking advantage of the confirmation 
effect—weighting stocks that get two votes more heavily, since they are more likely to be good—results 
in higher expected excess returns.  The confirmation portfolio is preferable to the equally weighted one. 
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How sensitive is this result to the assumptions we have made?  In the next section, we consider the effects 
on the portfolios’ relative performance from several changes.  First, we evaluate the macro weighting 
scheme of the strategy—the proportion of the allocation made to the underlying active fundamental and 
enhanced index funds.  We have assumed a 50%/50% split, but the sponsor allows different allocations.  
We will determine whether different macro weights will change the portfolios’ relative performance.  
Second, we briefly consider a hybrid approach, in which the portfolio manager is able to choose to weight 
more heavily only a subset of the shared stocks.  Giving the portfolio manager the ability to select how 
many and which of the shared stocks to overweight adds another level of active management to the 
portfolio, which may result in superior performance.  Third, we remove our assumption that fund 
managers’ choices are independent.  In fact, their strategies are likely to be correlated, changing our 
conclusion about pG2.  Fourth, we briefly consider the additional information that we may get when one of 
two managers does not choose a stock: prob(Si∈G|ch(1)) really means that Si was chosen by one 
manager, but not by the other.  If the second manager’s avoidance of the stock gives us material 
information, we should incorporate it into our expectation about the stock’s excess return.  Finally, we 
reevaluate our probabilities by explicitly recognizing that managers have multiple chances to match, since 
each chooses 25 times.  We expect that managers who choose once are more likely to match on good 
stocks; is the same true when managers choose 25 times? 
 
DISCUSSION AND ADDITIONAL CONSIDERATIONS 
 
The Macro Weighting Scheme 
 
We first consider the macro weighting scheme, the proportions that the portfolio manager allocates to the 
fundamental and quantitative funds, since the product allows participants to choose their relative 
exposures.  So far, we have assumed a 50%/50% split, which is the mix highlighted by the sponsor, but 
we should determine whether our results would change under other weighting schemes.  To begin, we 
will rewrite the return on the confirmation portfolio as:  
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where wj and uj are the weights in and the numbers of unique stocks held in each fund, j (j∈(1,2)).  Since 
n1 = n2, we can rewrite this as: 
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Similarly, we can write the return for the equally weighted portfolio as: 
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In both cases, the contributions of shared stocks are not affected by different weighting schemes.  Thus, 
although the returns of the portfolios will certainly be affected as we alter the mix of the component funds 
(as the unique stocks in the two funds perform differently), there will be no change attributable to the 
shared stocks.  Since we are concerned only with the shared stocks’ effect on the relative performance of 
the confirmation and equally weighted portfolios, we can ignore the weighting schemes assigned to the 
underlying funds. 
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Portfolio Manager’s Selection of Subset of Shared Stocks to Overweight 
 
The institutional portfolio we are considering uses equal weighting.  We suggest that the “confirmation” 
weighting offers higher expected returns.  For completeness, we now consider whether some mix of the 
two approaches might do even better: what if we allow the portfolio manager—the sponsor, who created 
this “best ideas” portfolio and chose the two underlying fund managers—to choose which of the shared 
stocks to overweight? 
 
Looking at Figure 3, it seems implausible, all else equal, for such a strategy to dominate the confirmation 
portfolio, since we would essentially be averaging that portfolio’s returns with the lower returns from the 
equally weighted portfolio.  However, the question becomes more interesting if we allow the portfolio 
manager to have some skill at choosing from among the shared stocks.  For example, let us assume that if 
the portfolio manager chooses to overweight one shared stock, the probability that the stock is good is 
(pG2 + δ)—higher than the unconditional probability for the shared stocks by the factor δ.  However, also 
assume that the portfolio manager’s stock-picking ability falls as she chooses to overweight more of the 
shared stocks, so that there is no additional confirmation if she chooses them all (since that would just 
imply that she had chosen the confirmation portfolio’s weighting scheme).  Let m denote the number of 
stocks the portfolio manager chooses to overweight, where 1 ≤ m ≤ s.  Letting the probability that her 
chosen stocks are good fall linearly (from [pG2 + δ] when m=1 to pG2 when m=s) implies that this 
probability (which we will call pG-PM), is: 
 

pG-PM = pG2 + 







− s1
δ

*(m-s).              (18) 

 
Now, we can consider the expected return for such a mixed portfolio.  There will be three terms in this 
equation: one for the unique stocks (u), one for the overweighted shared stocks (m), and one for the rest of 
the shared stocks (s-m).  For each of these three terms, we must consider both the appropriate weighting 
scheme and the expected return for a representative stock. 
 
The portfolio weights will be determined by considering how many parts we will create by having the 
unique stocks and the (s-m) shared stocks weighted equally, while giving the m shared stocks double 
weight.  Such a scheme divides the portfolio into (N – s +m) parts.  Thus, the weight for the unique stocks 

and for the (s-m) shared stocks will be 







+− msN
1

; the weight for the overweighted shared stocks will 

be twice that.  (For example, if N = 50, s = 5, and m = 2, so that the portfolio manager chooses to 

overweight two of the five shared stocks, the portfolio will be broken into 







+− 2550
1

, or 47 parts.  

The [50 – 2*5] = 40 unique stocks will each receive a weight of (1/47), as will (5-2) = 3 of the shared 
stocks, while the 2 shared stocks chosen by the portfolio manager will each be weighted at (2/47).) 
 
We now consider the expected return for a representative stock in each of the three groups.  The expected 
return for the unique stocks will be the same as it was for the confirmation and equally weighted 
portfolios above, as shown in equations (13) and (14).  For the shared stocks, however, we must use new 
probabilities that each stock is good or bad, since we now have more information: the portfolio manager’s 
evaluation of each stock as either good (so that it is included among the m overweighted stocks) or bad 
(so that it is not).  We have defined the probability that a shared stock is good, given that it is chosen by 
the portfolio manager, as pG-PM; thus, the probability that a stock in this chosen group is bad is (1-pG-PM).  
To determine the relative probabilities for the rest of the shared stocks that the portfolio manager did not 
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choose, we consider the number of good stocks that we expect to have among this group.  In the full set of 
50 choices, we expect a total of pG2*s good stocks.  For a given number of m shared stocks chosen by the 
portfolio manager, we expect pG-PM*m good stocks.  The difference between these two expected values is 
the number of good stocks we expect to find in the shared/not-chosen group.  Expressing this number as a 
proportion of the (s-m) stocks in this group gives us the probability that a shared stock is good, given that 
it is not chosen.  (For example, when s=5, m=4, δ=.03, and pG2 = 0.9342, we have that the probability that 
a stock is good, given that the portfolio manager chose it, is pG-PM = 0.9421; the probability that a stock is 
bad, given that the portfolio manager chose it, is (1-pG-PM) = .0579; the probability that a stock is good, 
given that it was not chosen by the portfolio manager, is 0.9046; and the probability that a stock is bad, 
given that it is not chosen by the portfolio manager, is 0.0658.)  Calling this good/not-chosen probability 
pG*, we have the following expression for the expected return of the mixed portfolio:  
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This expected return is increasing in  δ, the measure of the portfolio manager’s skill, and in m, the number 
of overweighted stocks.  However, even at a maximum m of (s-1) and the highest possible δ (that at 
which pG-PM ≈ 1, which, for our example, is approximately 0.06), the mixed portfolio is outperformed by 
the confirmation portfolio.  Figure 4 illustrates this relationship.  As the number of shared stocks (and, in 
this case, the number of overweighted stocks) increases, the expected return of the mixed portfolio rises, 
approaching, but not exceeding, the expected return for the confirmation portfolio.  Thus, allowing the 
portfolio manager to mix the two basic strategies does not result in better performance for the investors, 
even when the portfolio manager has some skill at choosing good stocks. 
 
Figure 4: Comparison of the Expected Returns for the “Mixed” Weighting Scheme to the Two Schemes 
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Assuming a δ value of 0.03, the figure shows that the expected returns for the mixed portfolio—which allows the portfolio manager to choose a 
subset of the shared stocks to overweight—does not improve the overall expected return.  Relative to the confirmation portfolio, the mixed 
portfolio puts more emphasis on the unique stocks and less on the shared stocks not chosen for overweighting.  However, the overweighting that 
the mixed portfolio does use allows it to perform better than the equally weighted portfolio. 
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The expected return differences among the three portfolios are driven by both the weighting schemes and 
the expected returns of the shared stocks (whereas the earlier differences between the confirmation 
portfolio and the equally weighted were driven solely by the weighting schemes).  Relative to both 
alternatives, the mixed portfolio puts less weight on the (s-m) shared stocks not chosen for overweighting, 
and more weight on the m chosen stocks.  It also weights the unique stocks slightly more heavily than 
does the confirmation portfolio.  These differences increase when m is smaller (since, as m approaches s, 
the mixed portfolio approaches the confirmation portfolio).  The expected return for each unique stock is 
the same for all three portfolios.  However, the expected return for each of the m chosen stocks in the 
mixed portfolio is higher than that used for the shared stocks in the other portfolios, and the expected 
return for the (s-m) unchosen shared stocks is lower.  The net effect is that, relative to the confirmation 
portfolio (which dominates the equally weighted over the relevant range, and therefore provides the real 
comparison for the mixed strategy), the mixed portfolio overemphasizes the unique stocks and 
underemphasizes the shared stocks.  The mixed strategy fails to take complete advantage of the 
confirmation effect—an effect that provides a much stronger signal of a stock’s quality than does the 
marginal contribution of the portfolio manager’s own skill.   
 
We should emphasize here that even the benefit the mixed strategy appears to offer is, in all likelihood, 
illusory.  That is because it is probably unrealistic to extrapolate the portfolio manager’s skill at 
indentifying good managers to include the ability to pick specific stocks.  We would not expect a portfolio 
manager to assert that he has skill at both levels, nor do we generally observe portfolio managers 
attempting to choose stocks.  On the contrary, Fung and Hsieh’s (2000) comment that “portfolio 
managers generally do not directly engage in trading” and Friedberg and Neill (2003) observation that 
‘[o]nly a few fund-of-funds managers make direct investments” suggest a concentration of portfolio 
manger effort at the fund level.  Thus, given that the portfolio manager is unlikely to be able to add value 
when she has skill, and given that–in the real world—we have no reason to suspect that this fund-of-funds 
portfolio manager even has any stock-picking skill, we expect that the mixed strategy is dominated by the 
confirmation approach. 
 
Correlation of Managers’ Choices 
 
In the initial analysis, we assumed that the fund managers’ choices were independent, so that 
prob[ch(2)|Si∈G) = prob(ch(1)| Si∈G)2.  However, what if their choices were correlated?  Would that 
change our conclusion that stocks chosen by both managers are more likely to be good than stocks only 
chosen by one manager? 
 
If the managers’ choices were positively correlated, the probability that a given stock was chosen by both 
managers would be greater than prob(ch(1)| Si∈G)2.  To make our analysis simple, let us assume that the 
new probability is higher than the old via some positive function of a variable η (for example, we could 
simply say that the new probability equals the old probability plus η).  Interpreting equation (7) using this 
new assumption, we can take its derivative with respect to η and find that: 
 
δprob(Si∈G|ch(2))/δη  =  
 
[δprob(ch(2)|Si∈G)/prob(ch(2)|Si∈G)] - [δprob(ch(2)|Si∈B)/prob(ch(2)|Si∈B)]         (20) 
 
Using the simple form for the change in probability—adding η—the numerators in these terms are just 1, 
and the sign of this derivative depends only on the relative sizes of prob(ch(2)|Si∈G) and 
prob(ch(2)|Si∈B).  Thus, since prob(ch(2)|Si∈G) > prob(ch(2)|Si∈B), δprob(Si∈G|ch(2))/δη will be 
negative: higher correlation between managers’ choices means we can derive less comfort from their 
common selections.  Each choice by one manager gives us less independent information than before.  (For 
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example, imagine the case when the two managers always chose the same stocks.  The probability that a 
given stock was good would then be simply (pG+ε).)  (We could assume that correlation causes one 
manager to be more likely to duplicate the other’s bad choices rather than his good ones; this could 
reverse the sign of the inequality.  However, such an assumption does not seem justified, especially given 
that unconditional probabilities favor duplication among good stocks.  It is more likely that the same 
tendencies would lead to the same result when there are fewer choices—from the smaller pool of good 
stocks. )  On the other hand, if we assume that the managers’ choices are negatively correlated, we would 
have the opposite result: a duplication would make it more likely that the chosen stock was good.   
 
Negative correlation between the funds’ returns would be ideal from the portfolio manager’s perspective 
on diversification grounds alone.  However, the fund returns are vastly more likely to be positively 
correlated, as are the managers’ stock choices, which are our concern.  Our funds employ nominally 
distinct strategies.  However, Khandani and Lo (2007) note that if funds use techniques based on common 
historical data, they will make similar bets, whether they are quantitative or active fundamental: “the 
same historical data… will point to the same empirical anomalies to be exploited… [M]any of these 
empirical regularities [used by quantitative funds] have been incorporated into non-quantitative equity 
investment processes, including fundamental ‘bottom-up’ valuation approaches.”  In our particular case, 
our two funds both choose stocks from the same domestic, large-cap universe.  Both underlying funds are 
themselves composed from holdings of multiple managers, and are constructed by selecting the most 
widely held and overweighted stocks from those managers, relative to their benchmarks.  By construction, 
then, the stocks used are shared at a sublevel.  Looking at the actual stock selections, we can see that 
sector allocations of the two funds show similar concentrations (Junkin, 2007a).  Finally, we have an 
estimate of the actual excess return correlation of our funds: according to the proposal, this correlation is 
between .2 and .3 (including back-tested data for the enhanced index fund, which is about 9 months 
younger than the fundamental fund; Junkin, 2007a).  Although these returns could be correlated even if 
the stock selections are not, this evidence nonetheless suggests that a positive relationship between stock 
choices is more likely than a negative one.  (If this were not the case, why would the sponsor explicitly 
account for duplications in the most basic description of the strategy?)  Thus, we expect that the 
probability that a stock is good, given that is chosen by both managers, is not as high as we found when 
we assumed that their choices were independent. 
 
We can see these effects below in Figure 5.  In this figure, the curves labeled “independent” duplicate the 
values from Figure 2.  To this baseline, we have added adjusted values, assuming both large and small, 
positive and negative values of η.  The large, negative η (labeled “both, ----”), as expected, gives us the 
most favorable confirmation effect; the small negative η also improves over the independent value, 
although not nearly as significantly.  On the other hand, positive correlation makes confirmation less 
valuable, and this effect is magnified for the larger correlation (“both, ++++”).  However, the important 
point is this: even if managers’ choices are positively correlated, as ours probably are, it is still more 
likely that a given stock is good if both managers choose it.  The confirmation effect, while muted with 
positive correlation, does not disappear. 
 
We can see this by looking at what is really important—expected returns.  To our earlier portfolio 
comparison (from Figure 3), Figure 6 adds the expected confirmation and equally weighted portfolio 
returns adjusted for the higher, positive η (the worst-case scenario we have used).  Expected returns for 
both portfolios fall, as we would expect.  But the relative story has not changed: the confirmation 
portfolio still outperforms the equally weighted.  There is still information to be gained from 
confirmation. 
 

130



The International Journal of Business and Finance Research ♦ Volume 4 ♦ Number 2 ♦ 2010 

 

Figure 5: How Probabilities Vary with Correlations between Managers’ Choices 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20 40 60 80 100

number of good stocks (nG)

pr
ob

ab
ili

ty
 th

at
 c

ho
se

n 
st

oc
k 

is
 g

oo
d

both, ----
both, -
both, independent
both managers, +
both, ++++
1, independent

 

 
This figure adds four curves to those from Figure 2, illustrating the effects of correlation between the managers’ choices.  When the managers’ 
choices are negatively correlated, the confirmation effect is magnified, as shown in the two uppermost grey curves (“both, ----” and “both, -”).  
When their choices are positively correlated, the confirmation effect is muted: the two “+” curves lie below the initial “both, independent” curve 
from Figure 2.  However, even when choices are correlated, a stock is more likely to be good if chosen by both managers.  (The figure assumes η 
values were ±.00001 and ±.00004.  These were chosen to be comparable to, but smaller in magnitude than, 1/(nB)2, which was .0001.) 
 
 
Figure 6: Effect of Positive Correlation on Expected Returns 
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When managers’ choices are positively correlated, expected returns for both portfolio weighting schemes fall.  However, the full portfolio still 
improves over the adjusted portfolio. 
 
Unique Stocks Are Not Chosen by the Second Manager 
 
Figure 6 shows that, given our assumptions, we would be better off with the confirmation portfolio even 
when managers’ choices are positively correlated.  Stocks chosen by both managers have received two 
“good” signals, and are therefore more likely to be good.  However, we have not considered fully the 
information that we receive when a stock is chosen by only one of our two managers.  Given that we have 
two possible signals, receiving only one “good” signal out of two is not the same as having a single 
manager identify a stock as good.  That is, when we have two signals, but only one is good, we actually 
have the event (chosen∩not chosen): the second manager has not chosen the stock.  Does this give us 
useful additional information? 
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Returning to our basic assumption of independence, we have that prob(Si chosen by #1∩Si not chosen by 
#2) = prob(Si chosen by #1)*prob(Si not chosen by #2).  We have already characterized the first of these 
probabilities.  The second is [(nG – 1)/nG]*(pG+ε) +[(nB – 1)/nB]*(1-pG-ε).  Using the same numbers as in 
Figure 3, we have an example of the magnitude of this probability: (9/10)*(.15) + (89/90)*(.85) = .98.  
Thus, incorporating the second manager’s avoidance of the stock should not make a meaningful 
difference in our qualitative results. 
 
Managers Make Multiple Choices 
 
Having considered possible interactions among managers’ choices, we now turn to their number of 
choices.  The derivations and figures discussed so far assume that the managers choose a stock once.  This 
assumption simplifies calculation and results in expressions that are easily interpretable.  However, each 
manager actually makes 25 choices, so that there are multiple opportunities for the two managers to 
choose the same stocks.  Does having multiple opportunities to “match” change our conclusions, making 
the adjusted portfolio preferable? 
 
Thoroughly characterizing the probabilities involved here is complex, but we can easily explore this 
question with some simplifying assumptions.  Let us describe the number of matches as a binomial 
variable, where a match is a success.  (Note that, in reality, the stocks are chosen without replacement, so 
that the probability of a match varies as choices are made.  However, since there are fewer good stocks 
than bad, properly accounting for this fact would simply strengthen our conclusion.)  Given that managers 
#1 and #2 have chosen a certain number of good stocks, (say n1G and n2G, respectively), the probability 

that manager #2 will choose one of the same good stocks  as #1 is 
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The probability that they will match on a bad stock in similarly defined.  We can use these probabilities to 
examine whether matches are more likely to be made on good stocks (so that we would prefer to double-
count matches, as does the confirmation portfolio) or on bad stocks (so that we would prefer the equal 
weighting scheme). 
 
As an example, assume that there are 1000 bad stocks (nB) and 100 good stocks (nG).  The unconditional 
probability that someone would choose a good stock is therefore approximately 9%.  Each of our 
managers chooses 25 stocks (n1= n2 = 25).  Table 1 shows the relative probabilities of a single match on a 
good or bad stock, given varying numbers of good stocks chosen by the two managers.  That is, for each 
combination of n1G and n2G, the values in the table show the probability of making a match on either a 
good or bad stock.  So, for example, assume that manager #1 chooses three good stocks and manager #2 
chooses two.  If manager #2 is choosing a bad stock, he has a (22/1000) chance of matching one of 
manager #1’s, and a (978/1000) of not matching.  The comparable probabilities for good stocks are 
(3/100) and (97/100).  Given these probabilities, and the fact that manager #2 will choose two good stocks 
and 23 bad ones, Table 1 shows that the probability of a match on a bad stock is .310, while the 
probability of a match on a good stock is only .058.  Thus, if (n1G, n2G) = (3, 2) is a likely outcome, we 
would prefer the equally weighted weighting scheme. 
 
The (n1G, n2G) combinations for which a good match is more likely are boldfaced and highlighted in Table 
1.  In this area—more than half of the table, stretching up and left from the lower right-hand corner—a 
match is more likely to be good than bad.  Thus, if we expect that our managers’ choices will put us in 
this area, we would be better off with the confirmation-portfolio weighting scheme.  We can assess the 
likelihood that we will be in this area by using the numbers above the main body of the table.  These give 
us the probability that a manager will choose the specified number of good stocks, using a range of values 
for their skill, (pG+ε).   
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Table 1: Relative Probabilities That a Match is a Good Stock or a Bad Stock 
 

p G +e = 0.1 0.1994 0.2659 0.2265 0.1384 0.0646 0.0239 0.0072 0.0018 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
cumulative 0.2712 0.5371 0.7636 0.9020 0.9666 0.9905 0.9977 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.3 0.0014 0.0074 0.0243 0.0572 0.1030 0.1472 0.1712 0.1651 0.1336 0.0916 0.0536 0.0268 0.0115 0.0042 0.0013 0.0004 0.0001 0.0000
cumulative 0.0016 0.0090 0.0332 0.0905 0.1935 0.3407 0.5118 0.6769 0.8106 0.9022 0.9558 0.9825 0.9940 0.9982 0.9995 0.9999 1.0000 1.0000

0.5 0.0000 0.0000 0.0001 0.0004 0.0016 0.0053 0.0143 0.0322 0.0609 0.0974 0.1328 0.1550 0.1550 0.1328 0.0974 0.0609 0.0322 0.0143
cumulative 0.0000 0.0000 0.0001 0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122 0.3450 0.5000 0.6550 0.7878 0.8852 0.9461 0.9784 0.9927

0.7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0013 0.0042 0.0115 0.0268 0.0536 0.0916 0.1336 0.1651 0.1712
cumulative 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0018 0.0060 0.0175 0.0442 0.0978 0.1894 0.3231 0.4882 0.6593

# good chosen by #1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# good chosen by #2

1
bad 0.329 0.323 0.317 0.309 0.302 0.293 0.284 0.275 0.265 0.254 0.243 0.231 0.218 0.205 0.190 0.175 0.160 0.143

good 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180
2

bad 0.323 0.317 0.310 0.303 0.295 0.287 0.278 0.268 0.258 0.247 0.236 0.224 0.212 0.198 0.184 0.170 0.154 0.138
good 0.020 0.039 0.058 0.077 0.095 0.113 0.130 0.147 0.164 0.180 0.196 0.211 0.226 0.241 0.255 0.269 0.282 0.295

3
bad 0.317 0.310 0.303 0.296 0.288 0.279 0.270 0.261 0.251 0.240 0.229 0.217 0.205 0.192 0.178 0.164 0.149 0.133

good 0.029 0.058 0.085 0.111 0.135 0.159 0.182 0.203 0.224 0.243 0.261 0.279 0.295 0.311 0.325 0.339 0.351 0.363
4

bad 0.309 0.303 0.296 0.288 0.280 0.272 0.263 0.253 0.243 0.233 0.222 0.210 0.198 0.185 0.172 0.158 0.143 0.128
good 0.040 0.075 0.110 0.142 0.171 0.199 0.225 0.249 0.271 0.292 0.310 0.327 0.342 0.356 0.368 0.379 0.389 0.397

5
bad 0.303 0.296 0.288 0.281 0.272 0.264 0.255 0.245 0.236 0.225 0.214 0.203 0.191 0.178 0.165 0.152 0.125 0.116

good 0.048 0.092 0.133 0.170 0.204 0.234 0.262 0.287 0.309 0.328 0.345 0.360 0.372 0.383 0.392 0.398 0.319 0.301
6

bad 0.294 0.287 0.280 0.272 0.264 0.256 0.247 0.237 0.227 0.217 0.206 0.195 0.183 0.171 0.159 0.145 0.132 0.117
good 0.057 0.108 0.155 0.196 0.232 0.264 0.292 0.316 0.337 0.354 0.369 0.380 0.389 0.395 0.399 0.401 0.402 0.400

7
bad 0.286 0.279 0.271 0.264 0.255 0.247 0.238 0.229 0.219 0.209 0.198 0.187 0.176 0.164 0.152 0.139 0.126 0.112

good 0.066 0.124 0.175 0.219 0.257 0.290 0.317 0.340 0.358 0.372 0.383 0.390 0.395 0.396 0.396 0.393 0.389 0.383
8

bad 0.277 0.269 0.262 0.254 0.246 0.238 0.229 0.220 0.210 0.200 0.190 0.179 0.168 0.157 0.145 0.132 0.120 0.106
good 0.075 0.139 0.194 0.240 0.279 0.311 0.337 0.357 0.372 0.383 0.389 0.392 0.392 0.390 0.385 0.378 0.369 0.359

9
bad 0.267 0.260 0.252 0.244 0.236 0.228 0.219 0.210 0.201 0.191 0.181 0.171 0.160 0.149 0.138 0.126 0.113 0.101

good 0.083 0.153 0.212 0.260 0.299 0.329 0.353 0.372 0.381 0.387 0.390 0.388 0.384 0.377 0.368 0.357 0.345 0.331
10

bad 0.256 0.249 0.242 0.234 0.226 0.218 0.209 0.201 0.191 0.182 0.172 0.162 0.152 0.141 0.130 0.119 0.107 0.095
good 0.091 0.167 0.228 0.277 0.315 0.344 0.364 0.378 0.385 0.387 0.385 0.380 0.371 0.360 0.347 0.333 0.318 0.302

11
bad 0.245 0.238 0.231 0.223 0.215 0.207 0.199 0.190 0.182 0.173 0.163 0.154 0.144 0.133 0.123 0.112 0.101 0.089

good 0.099 0.180 0.243 0.293 0.329 0.355 0.373 0.382 0.386 0.384 0.377 0.368 0.355 0.341 0.325 0.308 0.290 0.272
12

bad 0.233 0.226 0.219 0.212 0.204 0.196 0.188 0.180 0.171 0.163 0.154 0.144 0.135 0.125 0.115 0.105 0.094 0.084
good 0.107 0.192 0.258 0.306 0.341 0.365 0.378 0.384 0.383 0.377 0.366 0.353 0.337 0.320 0.301 0.282 0.263 0.243

13
bad 0.220 0.214 0.207 0.200 0.192 0.185 0.177 0.169 0.161 0.152 0.144 0.135 0.126 0.117 0.107 0.098 0.088 0.078

good  0.204 0.271 0.319 0.351 0.371 0.381 0.382 0.377 0.367 0.353 0.336 0.318 0.298 0.277 0.257 0.236 0.216
14

bad 0.207 0.200 0.194 0.187 0.180 0.173 0.165 0.158 0.150 0.142 0.134 0.125 0.117 0.108 0.099 0.090 0.081 0.072
good 0.123 0.215 0.283 0.329 0.359 0.376 0.382 0.379 0.370 0.356 0.339 0.319 0.298 0.276 0.254 0.232 0.211 0.191

15
bad 0.193 0.187 0.180 0.173 0.167 0.160 0.153 0.146 0.138 0.131 0.123 0.116 0.108 0.100 0.091 0.083 0.074 0.066

good 0.130 0.226 0.294 0.339 0.366 0.378 0.380 0.373 0.361 0.343 0.323 0.301 0.278 0.254 0.231 0.209 0.188 0.168
16

bad 0.178 0.172 0.166 0.159 0.153 0.147 0.140 0.133 0.127 0.120 0.113 0.105 0.098 0.091 0.083 0.075 0.068 0.060
good 0.138 0.236 0.304 0.347 0.371 0.379 0.377 0.366 0.350 0.329 0.306 0.282 0.258 0.233 0.210 0.187 0.166 0.147

17
bad 0.162 0.156 0.151 0.145 0.139 0.133 0.127 0.121 0.114 0.108 0.101 0.095 0.088 0.081 0.075 0.068 0.061 0.053

good 0.145 0.246 0.313 0.354 0.374 0.379 0.373 0.358 0.338 0.315 0.290 0.264 0.238 0.213 0.189 0.167 0.147 0.128
18

bad 0.145 0.140 0.135 0.129 0.124 0.119 0.113 0.107 0.102 0.096 0.090 0.084 0.078 0.072 0.066 0.060 0.053 0.047
good 0.152 0.255 0.322 0.360 0.376 0.377 0.367 0.349 0.326 0.300 0.273 0.246 0.219 0.194 0.170 0.149 0.129 0.111  

 
The values in the body of the table show the probabilities of making a match  on a good stock (lower half of cell) or on a bad stock (upper half of 
cell) for various combinations of good choices by managers 1 and 2.  Cells with shading identify combinations of numbers of good choices by our 
managers that make the confirmation portfolio weighting scheme preferable to the equally weighted scheme. 
 
They also show the cumulative probabilities, highlighting the middle of the distribution.  For example, if 
we expect that our managers are no better than average, we can assume that (pG+ε) = .1.  In this case, the 
most likely number of good stocks chosen is 2, and 95% of the time, (n1G, n2G) will fall in the “bad” 
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northwest corner of the table.  Matches are more likely to be on bad stocks than on good, and we would 
be better off with the equally weighted portfolio. 
 
But why pursue active management at all if we assume our managers have no skill?  Instead, let us 
consider what happens if our managers choose good stocks half the time.  In this case, the expected 
number of good stocks for each manager is 12, and we are almost certain to fall in the “good” part of the 
table.  If our managers are truly skilled, we expect them to choose good stocks with high probability, so 
that any matches are more likely to be on good stocks than on bad.  Thus, if we trust our managers, we 
would prefer to double-count their confirmed choices in our portfolio: we would prefer the confirmation 
weighting scheme. 
 
CONCLUSIONS 
 
Successful active management is hard, especially in the large-cap domestic equity space.  For example, in 
a Wilshire Associates study of the relative performance of the S&P500 against active large-cap core 
managers, the authors find that most active managers underperformed the index during the entire second 
half of the 1990s (Foresti and Toth, 2006).  However, in a low interest rate environment, the search for 
yield leads many pension fund managers toward active strategies and their promise of alpha.  As demand 
increases, fund managers design new products in response.  In this paper, we consider one of these new 
products: an institutional  fund of mutual funds combining the most heavily weighted stocks from an 
active fundamental fund and from an enhanced index fund.  After the sponsor identifies each of his two 
fund managers’ 25 “best ideas” stocks, he will put them together in an equally weighted portfolio.  Any 
stocks held in both underlying funds will be counted only once.  Our goal was to assess the proposed 
equally weighted scheme against an alternative “confirmation” weighting scheme, in which stocks among 
the best ideas of both managers are more heavily weighted in the fund of funds. 
 
The fund of funds we are considering involves two levels of active management: the stock-picking ability 
of the two fund managers, and the manager-picking skill of the portfolio manager.  We enter the process 
at the end.  The fund managers have chosen their stocks, and our portfolio manager has identified them, 
from the universe of managers working in the relevant parts of the large-cap space, as the two he believes 
are most highly skilled.  If he is right—if he really has the skill to choose managers, as he asserts he does 
with his very job description—why treat stocks with two votes of confidence like all of the others?  Two 
votes may make it more likely that a stock is good.  If so, the portfolio’s expected return will be higher if 
this stock is more heavily weighted. 
 
Our model assumes that the skill of the fund managers is real.  This implies a confirmation effect for 
stocks chosen by both, so that our proposed weighting scheme performs better than the sponsor’s equally 
weighted scheme.  This superior performance is robust to changes in many of our assumptions.  For 
example, the result holds regardless of the relative macro weights assigned to the underlying funds.  If the 
fund manager’s choices are negatively correlated—which is unlikely—the confirmation effect is 
strengthened; on the other hand, when the correlation is positive, the effect is mitigated, but not 
eliminated.  Similarly, when we account for the fact that one manager did not choose stocks unique to the 
other manager, or for managers’ multiple opportunities to choose the same stocks, the conclusion 
remains: we can increase the portfolio’s expected return by overweighting confirmed stocks.   
 
Moreover, allowing the portfolio manager to add a third level of active management, by choosing which 
of the shared stocks to overweight, does not add value to the process.  Even when the portfolio manager is 
himself a skilled stock picker (which we would not expect, since these managers are hired to choose 
managers, not stocks), the gain in expected return from his additional level of confirmation is outweighed 
by the loss in expected return from the lower weighting for the shared stocks he does not choose.  Again, 
the confirmation weighting scheme is the dominant performer.    
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The critical assumption underlying this result is that the underlying fund managers are skilled stock 
pickers.  This is the assertion that is made by the portfolio manager, too, as he pitches his new fund-of-
funds product to institutional buyers.  In future research, it would be interesting to attempt to quantify the 
size and persistence of ε, our measure of the fund managers’ stock-picking skill.  If ε is “too small,” then 
we would not expect our proposed weighting scheme to add enough value to justify any extra 
implementation costs.  Of course, if ε is too small, the whole rationale for the fund of funds falls apart in 
any case. 
 
Thus, unless we expect our managers to have no skill in choosing stocks—in which case, why would we 
pay the higher fees for them?—we should capitalize on the stronger signal we get when both identify the 
same stock as desirable.  Portfolio returns should be higher when we recognize that two heads really are 
better than one. 
 
REFERENCES 
 
Amo, Anne-Valere, Helene Harasty, and Pierre Hillion (2007) “Diversification Benefits of Funds of 
hedge Funds: Identifying the Optimal Number of Hedge Funds,” The Journal of Alternative Investments, 
Vol 10(2), Fall, p.10-22 
 
Anson, Mark (2003) “Hedge Fund Indexes: Benchmarking the Hedge Fund Marketplace,” Journal of 
Indexes, Third Quarter 
 
Bodie, Zvi, Alex Kane, and Alan J. Marcus, Investments, 7th ed., McGraw-Hill/Irwin, Boston, 2008. 
 
Bodie, Zvi, Alex Kane, and Alan J. Marcus, Investments, 2nd ed., Irwin, Burr Ridge, IL, 1993. 
 
Bonafede, Julia K., Steven J. Foresti, and Thomas E. Toth (2004) “Alpha: A Right or a Privilege?  An 
Examination of the Challenges and Risks of Hedge Fund Investing,” Wilshire Associates Incorporated, 
October 14 
 
Foresti, Steven J. (2005) “Institutional Use of Hedge Funds: Penetrating the Darkness on the Hedge of 
Town,” Wilshire Consulting, July 26 
 
Foresti, Steven J. and Thomas E. Toth (2006) “Incorporating Active Management… Over Active 
Imagination,” Wilshire Associates Incorporated, June 28 
 
Frank Russell Canada Limited (2005) “’Select Holdings’ to Enhance Russell U.S. Equity Fund,” 
RussellUpdate, November 9 
 
Friedberg, Marc E. and James R. Neill (2003) “Private Equity Fund-of-Funds: Manager Selection in the 
Current Market Environment,” Wilshire Consulting white paper 
 
Fung, William and David A. Hsieh (2000) “Performance Characteristics of Hedge Funds and Commodity 
Funds: Natural v. Spurious Biases,” Journal of Financial and Quantitative Analysis, Vol. 35(3), 
September, p.291-307 
 
Gehin, Walter and Mathieu Vaissie (2004) “Hedge Fund Indices: Investable, Non-Investable, and 
Strategy Benchmarks,” working paper, EDHEC Risk and Asset Management Research Centre, October 

135



L. S. Livingston   The International Journal of Business and Finance Research  ♦ Vol. 4 ♦ No. 2 ♦ 2010 

 

 

Junkin, Andrew (2007a) Presentation to Public Retirement Fund Board: Proposed Fund-of-Funds 
Strategy, May 24 
 
Junkin, Andrew (2007b) Presentation to Public Retirement Fund Board: Small-Cap Equities, November 
28 
 
Khandani, Amir E. and Andrew W. Lo (2007) “What Happened to the Quants in August 2007?”, working 
paper, MIT Sloan School of Management, September 20 
 
Kosowski, Robert, Narayan Y. Naik, and Melvyn Teo (2007) “Do Hedge Funds Deliver Alpha?  A 
Bayesian and Bootstrap Analysis,” Journal of Financial Economics, Vol. 84, p. 229-264 
 
Lo, Andrew W. (2007) “Where Do Alphas Come From?  A New Measure of the Value of Active 
Investment Management,” working paper, MIT Sloan School of Management, May 15 
 
Malkiel, Burton and Atanu Saha (2005) “Hedge Funds: Risk and Return,” Financial Analysts Journal, 
Vol. 61(6) November/December, p. 80-88 
  
Napoli, Michael J., Jr., “Hedge Funds—Implementation Strategies,” Presentation to 2004 Wilshire 
Consulting Client Conference. 
 
Wainscott, Craig (2005) “Active and Passive,” Russell Investment Group, October 
  
Waring, Barton and Laurence Siegel (2003) “Understanding Active Management,” InvestmentInsights, 
Vol. 6(1), April 
 
BIOGRAPHY 
 
Lynda S. Livingston is a professor of finance in the School of Business and Leadership at the University 
of Puget Sound.  She teaches personal finance, corporate finance, financial markets, and investments. 
She can be contacted at  School of Business and Leadership, University of Puget Sound, 1500 North 
Warner #1032, Tacoma WA, 98416, USA. Email: llivingston@ups.edu 

136




