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ABSTRACT 

 
This paper introduces the autocorrelation effect of assets’ returns into the valuation model of reset options. 
The MA(q) process, which is an extension of MA(1) process noted by Liao and Chen (2006), is applied to 
the valuation of reset options in this paper. Due to the impact of autocorrelation on the volatility of assets’ 
returns, the probability of reset and the value of reset option are affected. Positive autocorrelation 
increases the value of a reset option by increasing the probability of reset. On the contrary, negative 
autocorrelation decreases the probability of a reset and reset premium. Moreover, the reset timing is  
affected by the autocorrelation characteristics. In the case of positive autocorrelation, the investors tend 
to reset earlier to prevent a possible loss. Positive autocorrelation is also significant for the hedging of 
reset options. This paper demonstrates that positive autocorrelation characteristics lessens the delta jump 
and gamma jump problem. 

JEL: G12, G13 
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INTRODUCTION 

o give investors more protection, increasing numbers of derivatives with embedded reset clauses 
have become available. These reset clauses can be exercised at any time during the life of the 
contract or only limited to some predetermined dates. The reset clauses commonly contain the date 

of maturity or the strike price. Options with reset rights on the maturity date commonly exist in crude oil 
offshore exploration and production contracts. This reset clause allows the holder to reset the maturity of 
the investment option and to look for better investment conditions. Crude oil price is the critical factor 
affecting the value of this kind of option. If crude oil price movements can be forecast by certain models, 
the value of the reset clause might be affected. 

The model derived from Liao and Chen (2006) is an important contribution pricing of a vanilla option 
whose underlying asset has autocorrelation characteristics. However no existing studies consider the 
impact of this autocorrelation characteristic on the value of a reset option. Due to the path dependence of 
reset options, it is reasonable to expect that the impact of autocorrelation on the prices of reset options 
might be augmented. Many studies have demonstrated different valuation models for reset options with 
different reset conditions. The main objective of this paper is to apply a MA(q) process, which is an 
extension of MA(1) process mentioned by Liao and Chen (2006), to capture the effect of autocorrelation. 
We also discuss the impact of autocorrelation on a valuation model of a reset option. 

The remainder of this paper is organized as follows. In Section 2, we introduce the autocorrelation effect 
and formulate modified valuation models for four kinds of options with reset rights embedded. The 
autocorrelation impact and the types of reset options are based on the previous studies of Gray and 
Whaley (1997, 1999), Cheng and Zhang (2000), Liao and Wang (2002), Liao and Chen (2006). In Section 
3, we demonstrate the numerical analysis to compare the difference properties between the traditional 
reset option model and the proposed model. Finally, Section 4 provides some concluding comments. 

T 
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LITERATURE REVIEW 
 
Besides the phenomenon of mean reversion and extreme jump, many scholars argue that crude oil prices 
are highly autocorrelated [Deaton and Laroque (1992), Deaton and Laroque (1996), and Chambers and 
Bailey (1996)]. Just like for other commodities, such high autocorrelation is basically due to time 
dependencies in supply and demand shocks and performances of speculators. On the other hand, consider 
the options with reset rights on the strike price, which is the major consideration of this paper.  
Commonly, the underlying assets of this kind of reset option are financial assets. There is a growing 
consensus that many financial asset returns can be efficiently predicted. Many scholars argue that the 
lagged price autocorrelation of financial asset is one source of this predictability [Lo and MacKinlay 
(1988); Poterba and Summers (1988); Conrad and Kaul (1988); Mech (1993); Patro and Wu (2004); 
Bianco and Reno (2006)]. Especially in emerging markets, many studies attribute the pervasive 
phenomenon of autocorrelation to irrational trading strategies, such as the feedback trading strategy 
[McKenzie and Faff (2003); Faff, Hiller and McKenzie (2005)]. Whether the reset clauses are on the date 
of maturity or the strike price, they are designed to protect the holders from the uncertainty of underlying 
assets. However, once the predictability of the underlying assets is significant, it can be expected that 
decreasing uncertainty of underlying assets would affect the value of the reset right. 

Existing reset option valuation models fail to consider autocorrelation characteristic of underlying assets. 
Like the Black-Scholes model, reset option valuation models are based on the assumption that the stock 
prices follows a geometric Brownian motion process, implying that stock returns are independent. Lo and 
Wang (1995) argue that predictability of asset returns makes the price of options based on the predictable 
underlying assets to be different from fair value under the assumption of independent stock returns. They 
introduce the predictability concept into the Black-Scholes model and argue that the effect on option 
prices critically depends on how predictability is specified in the drift. They find that if drift only depends 
on exogenous time-varying economic factors, an increase in predictability reduces the asset’s prediction 
error variance and decreases option prices. If drift also depends on lagged prices, an increase in 
predictability can increase or decrease option values. Their conclusions are based on the assumptions that 
the conditional mean of asset returns doesn’t depend on past prices or returns,  conditional expectation of 
the prediction error is zero, and the unconditional variance of asset return is fixed.  

Because of the convertible relationship between AR(∞) process and MA(1) process, Liao and Chen (2006) 
further use a first-order moving average process [MA(1) process] to extract the autocorrelation from the 
asset returns’ first moment which introduces the predictability characteristics into the diffusion term of 
dynamic process of stock returns and improves the limitation of only capturing predictability in the drift 
term. Liao and Chen (2006) derive the valuation model of European options when underlying asset 
returns are autocorrelated, which is also a more flexible model than the Black-Scholes model. The major 
difference between Liao’s model and the Black-Scholes model is volatility input. The total volatility input 
in Liao’s model is the conditional standard deviation of continuous-compounded returns over the option’s 
remaining life. The total volatility input in Black-Scholes model is indeed the diffusion coefficient of a 
geometric Brownian motion times the square root of an option’s time to maturity. Liao and Chen find that 
the impact of autocorrelation introduced by the MA(1)-type process is significant to option values even 
when the autocorrelation between asset returns is weak. 

The main objective of this paper is to apply a MA(q) process, which is an extension of MA(1) process 
mentioned by Liao and Chen (2006), to capture the effects of autocorrelation.  We also discuss the 
impact of autocorrelation on a valuation model of a reset option. According to Liao and Chen (2006), if 
the asset’s return is positively (negatively) correlated, the volatility input is greater (smaller) than that in 
traditional geometric Brownian motion. If the volatility is affected by the autocorrelation, the probability 
of triggering reset conditions which impact the value of reset options would also be affected.  

After adjusting the valuation model of the reset option to account for autocorrelation effects, we find that 
when the underlying asset return is positively (negatively) autocorrelated, the value of the reset option 
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derived from our model is higher (lower) than the value derived from other general reset valuation models. 
Furthermore, according to the study of Dai, Kwok, and Wu (2003), they state that the optimal reset policy 
of a reset option, which allows holders to discretionarily choose any timing to reset the strike price, 
depends on the time dependent behaviors of the expected discounted value of the at-the-money option 
received upon reset timing. In this paper, we further find that the autocorrelation characteristic of 
underlying asset returns also affects the optimal reset policy. When the autocorrelation is positive 
(negative), the holders of reset options tend to reset earlier (later). This paper also shows that if we 
consider the positive autocorrelation effect on the reset option, we can lessen the problem of hedging for 
the reset option, such as delta jump. 
 
MODEL DEVELOPMENT 
 
Dynamic Process of Autocorrelated Asset Return 
 
Without loss of generality, this paper uses a stock as the underlying asset and assumes there is no dividend 
during the holding period. Assume that the current time is 0t , the maturity time is T, and the time to 
maturity is τ , where 0T tτ = −  and 0τ > . Instead of assuming that stock returns follow the geometric 
Brownian motion process, we not only follow the continuous MA(1)-type (first-order moving average 
process) dynamic process introduced by Liao and Chen (2006), but further extend the MA(1)-type 
dynamic process to the MA(q)-type dynamic process. We assume the dynamics process of the stock 
returns for all 0t t T≤ ≤  as follows: 

1

q
t

t t h
t

dS dt dW dW
S ϕ ϕ

ϕ

µ σ σ β −
=

= + + ∑                 (1) 

where tS  is the stock price in the time t , t tdS S  is the instantaneous stock return, µ  is the 
expected instantaneous rate of return, 0σ >  is the instantaneous standard deviation of return, 0dt >  
is a small time interval, and 0h >  is a fixed, but arbitrary, small constant. q  is the order of 
MA(q)-type dynamic process. tW  is a one-dimensional standard Brownian motion and 

, 0,  ,  2 , ,  t idW i h h qh− =   are the increments of the standard Brownian motion at time t i− . For 
1,  2,  ,  qϕ =  , the coefficient ϕβ  represents the impact of the past shocks, which is assumed to 

satisfy | | 1ϕβ ≤ . 

Liao and Chen (2006) proved there exists a probability measure Q for the MA(1) process defined in Eq. 
(1). Following their study, the MA(q) process under the martingale probability measure Q can be 
represented as follows. 

1

Q q
Q Qt

t A t hQ
t

dS rdt dW I dW
S ϕ ϕ

ϕ

σ σ β −
=

= + + ⋅∑                (2) 

where { }0
1A t qh t TI

+ ≤ ≤
= . Note that when 0 0t T t qh≤ ≤ + , the dynamic process reduces to a geometric 

Brownian motion. Accordingly, the Black-Scholes formula is a special case of the MA(q)-type option 
model with maturity shorter than h. On the other hand, if 0T t qh≥ + , the dynamic process of the stock 
return is not identical to a geometric Brownian motion. However, we can view the dynamic process of the 
stock return to be driven by ( 1)q +  one-dimensional Brownian motions 

0 0 01, 2, 1, , , , Q Q Q
t t t t q t tW W W− − + − , 
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where we make the assumption that 
0 0 0 0 0 01, 2, 1, ( ) ( 2 ){ ,  , ,  } { ,  ,  Q Q Q Q Q Q

t t t t q t t t t A t h t A t h tW W W W I W I W− − + − − − − − −≡ ⋅ ⋅  

0( ), ,  }Q
A t qh tI W − −⋅ , given the following properties: 

(i) For 0[ ,  ]t t qh T∈ + , 
0 0 0 0 0 01,( ) 2, 2,( ) 3, ,( ) 1,,  , ,  Q Q Q Q Q Q

t h t t t t h t t t q t h t q t tW W W W W W− − − − − − − − + −≡ ≡ ≡ , and 

0 01, ( ) ( ) 2, 2, 3, , 1,,  , ,  Q Q Q Q Q Q Q Q
t h t h t dt t h t t t h t q t h q tdW W W dW dW dW dW dW− − − + − − − − += − = = = . 

(ii) 1,
Q
tdW , 2,

Q
tdW ,…, 1,

Q
q tdW +  and are independent, which also means the covariance 

1, 2, 1,( ) 0Q Q Q
t t q tE dW dW dW +⋅ ⋅ ⋅ = . 

Based on the definition of 
0 0 01, 2, 1,,  , ,  Q Q Q

t t t t q t tW W W− − + − , the dynamic process of the stock return in Eq. (2) 
can be further represented as: 

1 1
1

Q q
Q Qt

Q
t t

dS rdt d W W
S ϕ ϕ

ϕ

σ β +
=

 
= + + 

 
∑                (3) 

Following the MA(q)-type dynamic process in Eq. (3), the ˆIto  integral equation of stock price is: 

0 0

2 2
0 0 0 ( ) ( )

1 1

1exp{ ( ) [ (2 )( ) ( )] (1 ) }
2

q q
Q Q Q Q
t t t h t t t qhS S r t t t h t t t W Wϕ ϕ ϕ ϕ
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σ β β ϕ σ β σ− − − −
= =

= − − + − − + − + + +∑ ∑ (4) 

where 
0

Q
tS  is the stock price in the time 0t  under the martingale probability measure Q, the quadratic 

variation of 1 1
1

q
Q Q

t

W Wϕ ϕ
ϕ

β +
=

 
+ 

 
∑  equals 

0

2
( )

1
(1 )

qt

B ut
I duϕ

ϕ

β
=

+ ⋅∑∫ , and { }0( ) 1B u t u t qhI ≤ ≤ −=  is an 

indication variable. Furthermore, according to Girsanov’s theorem, we can transform the martingale 
probability measure Q into probability measure R. The dynamic process of a one-dimension R-Brownian 
motion R

zW  can be defined as: 

0
1

(1 ) ,         [ ,  ]

,                          [ ,  ]

q
Q

zR
z

Q
z

dW dz z t T qh
dW

dW dz z T qh T

ϕ
ϕ

σ β

σ
=


− + ∀ ∈ −= 

 − ∀ ∈ −

∑
 

where ,  z t t hϕ= − , for  1,  2, ,  qϕ =  . And, the solution of the stock price at time t under 
probability measure R can be represented by using ˆIto  lemma as: 

0 0

2 2
0 0 0 ( ) ( )

1 1

1exp{ ( ) [ (2 )( ) ( )] (1 ) }
2

q q
R R R R
t t t h t t t qhS S r t t t h t t t W Wϕ ϕ ϕ ϕ

ϕ ϕ

σ β β ϕ σ β σ− − − −
= =

= − + + − − + − + + +∑ ∑ .(5) 
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The reset option we mention in this subsection is a standard European-type reset option with single reset 
right. This type of reset option gives its holder a right to reset their strike price on only one pre-specified 
reset date. In the remainder of this subsection we take a standard European-type reset put with single reset 
right as the example of valuation. The holder of the standard European-type reset put with single reset has 
the right to reset the strike price to the prevailing stock price when the stock price exceeds the original 
strike price on the pre-specified reset date. The terminal payoff of the reset put is: 

The Valuation of Standard Reset Option with Single Reset Right under the Ma(Q) Process 

           if > ,             (reset on time ) 
           if ,      (not reset on time )   

0                    if ( > ,  )  ( ,  )

t T t T t

T t T

t T t t T

S S S K S S t
K S S K S K t

S K S S or S K S K

− ≤
 − ≤ ≤
 ≥ ≤ ≥

 

where time t is the pre-specified reset date, tS  is the prevailing stock price on time t, K is the original 
strike price, and TS  is the stock price at the maturity. Therefore, the expected terminal value of the reset 
put is the sum of the expected conditional terminal payoffs, weighted by their probability of occurring, 
and the value of the standard European-type reset put under the martingale probability measure Q is 
represented as follows. 

0

0
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And we define 

0

0
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          (7) 

where 
0t

RP  is the value of MA(q)-type standard European-type reset put at time 0t . Assume the 
underlying asset returns follow the MA(q)-type dynamic process described as Eq. (3), then the value of 
reset part of standard European-type reset put, 1P , can be represented as: 

( )
0 0

( )
1 1 1 1 1( ) ( ) ( )r T t

t tP S e N d N b S N d N b− −
+ − + +′ ′ ′ ′= ⋅ ⋅ ⋅ − − ⋅ ⋅ − .           (8) 

And, in the similar way, the value of non-reset part of standard European-type reset put, 2P , can be 
represented as: 

( ) ( )0

0

( )
2 2 1 2 2 1 2, , , ,r T t

tP e K N d d S N d dρ ρ− −
− + + −′ ′ ′ ′= ⋅ ⋅ − − − ⋅ − − .           (9) 

Therefore, the value of MA(q)-type standard European-type reset put can be represented as: 
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         (10) 

where t is the reset date of the reset put, r is the risk-less interest rate, ( )N a  is a cumulative univariate 
normal distribution function with upper integral limit a. 2 ( , , )N c d ρ  is a cumulative bivariate normal 
distribution function of c and d with covariance ρ  and, the other parameters as follows. 

The valuation model of standard European-type reset put mentioned in the study of Gray and Whaley 
(1997, 1999) can be viewed as the special case of our valuation model when 0ϕβ =  and 0h = , which 
means the underlying asset return is independent. 

In this subsection, we extend the valuation model of standard European-type reset options to a more 
generalized formula, which has multiple reset times, only one of which the holders can choose.  
According to the valuation model for this type of reset mentioned by Cheng and Zhang (2000), we 
assume a standard European-type reset put with n reset times 

The Valuation of a Standard Reset Option with Multiple Reset Rights Under the Ma(Q) Process 

1 20 nt t t T< < < < < , and we define 

0 10,  nt T t += =　 . The holder of this reset put has the right to reset the strike price to the prevailing stock 
price when the stock price exceeds the original strike price on the pre-specified reset dates. The terminal 
payoff of the reset put is: 
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And, the value of the MA(q)-type standard European-type reset put with n reset times at the time 0t  is 
represented as follows. 
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= − ⋅∑   is the value of reset part of 

reset put if the holder reset on any of the pre-specified reset time it , and 

1 2 12 { [ ( ), ( ), , ( ), ( )]}{ [ ( )] }
n n

rT
K Max S t S t S t S tNP e E K S T I

+

−
== − ⋅   is the value of non-reset part of reset put. 

1( ), , ( )nS t S t  are stock prices at the reset times 1 2,  ,  ,  nt t t . 
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Again, assume the underlying asset returns follow the MA(q)-type dynamic process described as Eq. (3), 
then 

( ) ( )( )00

0 0

0

0

0 1 2 1 1 2 1
1

1 1 1 1 2 ( 1)

1 2 ( 1)

ˆˆˆ ˆ{ ( , , , , ; ) [ ( , , , ; )

  ( , , , ; )]} ( , , , ; )

  ( , , , ;

ii

i

n
r T t tr t t

t t i i i i n i
i

rt rT
i i n i n i

rt
t n i

NRP S e N C C C C e N C C C

e N C C C Ke N D D D

S e N D D D

−− −−
− + + +

=

− −
+ + − + + + +

−
− − + −

= ⋅ Σ ⋅ Σ

− ⋅ Σ + ⋅ Σ

− ⋅ ⋅ Σ

∑  

 

 )　　

     (12) 

where 0 1( , , , )i iN C C − Σ , 1 1
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1 ( 1)( , , ; )n iN D D− + − Σ  are the cumulative multivariate normal distribution functions with covariance iΣ , 
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iΣ , iΣ , iΣ  respectively. And, the other parameters as follows. 

0 2 2
0 0 0

1
0

2
0 0

1

1ln( ) ( ) [ (2 )( ) ( )]
2

,
(2 )( ) ( )

q
t

i i i

q

i i

S
r t t t h t t t

K
C

t h t t t

ϕ ϕ
ϕ

ϕ ϕ
ϕ

σ β β ϕ

σ β β ϕ

=

=

+ − + + − − + −
=

+ − − + −

∑

∑
 

2 2

1

2

1

1{ [1 (2 )]} ( )
2

      1, 2,..., 1,
[1 (2 )] ( )

q

i k

k q

i k

r t t
C k i

t t

ϕ ϕ
ϕ

ϕ ϕ
ϕ

σ β β

σ β β

=

=

+ ⋅ + + ⋅ −
= ∀ = −

+ + ⋅ −

∑

∑
,  

101



YH. Liu et al   IJBFR ♦ Vol. 5 ♦ No. 2 ♦ 2011 
 

2 2

1

2

1

1{ [1 (2 )]} ( )
2ˆ ,      1, 2, , ( 1),

[1 (2 )] ( )

q

i k

k q

k i

r t t
C k i i n

t t

ϕ ϕ
ϕ

ϕ ϕ
ϕ

σ β β

σ β β

=

=

− ⋅ + + ⋅ −
= ∀ = + + +

+ + ⋅ −

∑

∑
  

( )
0 2 2

0 0 0
1

2
0 0

1

1ln( ) ( ) [ (2 )( ) ( )]
2

,       1, 2, , 1 .
(2 )( ) ( )

q
t

i i

i q

i

S
r t t t h t t t

K
D i n

t h t t t

ϕ ϕ
ϕ

ϕ ϕ
ϕ

σ β β ϕ

σ β β ϕ

=
±

=

− − − ± + − − + −
= ∀ = +

+ − − + −

∑

∑
　  

Also, the valuation model in this subsection provides more flexibility than the model derived by Cheng 
and Zhang (2000). The model of Cheng and Zhang (2000) is the special case of the model developed here 
when 0ϕβ =  and 0h = , which means the underlying asset return is independent. 

In practice, a European-type reset option with m reset level is a more common instrument than a 
European-type standard reset option we mentioned before. In this subsection we apply the MA(q) process 
to the valuation of a European-type reset option with m reset levels which has been derived by Liao and 
Wang (2002). For example, a European-type reset call with m reset levels 

The Valuation of Reset Option with M Reset Level and Continuous Time Under the Ma(Q) Process 

1 2, , , mD D D  has a set of 
reset strike prices 1 2, , mK K K  and the original strike price 0K K= . The trigger condition of reset is 
that, if the minimum stock price during the period of 0[0,  ]T  or what we call the monitoring window 
falls in the pre-specified reset intervals, the strike price can be reset to corresponding strike price. The 
terminal payoff of this type of reset call can be represented as: 
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Based on the concept of partial barrier options and the martingale method, Liao and Wang (2002) 
mentions that the European-type reset call with m reset levels can be viewed as the combination strategy 
of vanilla call and down-and-out call, which can be inferred as: 
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         (13) 

where Re set
tC  is the value of MA(q)-type reset call with m reset levels at the time t , ( )S t  is the stock 

price at the time t . ,j i
tDOC  refers to the down-and-out call with strike price jK  and barrier level iD , 
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and ( )T tτ = −  is time to maturity. ( )N a  is a cumulative univariate normal distribution function with 
upper integral limit a. Therefore, it is straightforward to see that the European-type reset call with m reset 
levels and continuous reset date with reset period 0( )T tλ = −  less than time to maturity τ  can be 
replicated with the following trading strategies: (1) Purchase one unit of European call option with strike 
price mK ; (2) Purchase one unit of European down-and-out call option with strike price , 1iK − , barrier 

iD , 0,...,i m= , for each i; (3) Short sell one unit of European down-and-out call option with strike price 

iK , barrier iD , 0,...,i m= , for each i. The valuation model of a European call option with strike price 

mK  under MA(1) process has been derived by Liao and Chen (2006). If we extend to the MA(q) process, 
the call price can be represented as: 
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Also, based on the MA(q) process and the martingale method, the valuation model of a MA(q)-type 
European down-and-out call option with strike price jK  and barrier iD , where 1  j i or i= −  and 

0,...,i m= , can be represented as follows. 
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where 2 ( , , )N c d ρ′  is a cumulative bivariate normal distribution function of c and d with covariance 
ρ′ . And, the other parameters as follows. 

( ) ( )( )

( )( )

2 2

1

2

1

1ln( ) 2
2

( , ) ,
2

q

q

S t
r h

D
d D

h

ϕ ϕ
ϕ

ϕ ϕ
ϕ

λ σ β β λ ϕ λ
λ

σ β β λ ϕ λ

=
±

=

 
+ ± + − + 

 =

+ − +

∑

∑
 

2
2 2

1

2

1

1ln( ) [ (2 )( ) ]
( ) 2

( , )  ,
(2 )( )

q

q

D r h
K S t

g D K
h

ϕ ϕ
ϕ

ϕ ϕ
ϕ

τ σ β β τ ϕ τ

σ β β τ ϕ τ

=
±

=

+ ± + − +
⋅

=

+ − +

∑

∑
 

103



YH. Liu et al   IJBFR ♦ Vol. 5 ♦ No. 2 ♦ 2011 
 

2 2

1

2

1

( ) 1ln( ) [ (2 )( ) ]
2

( )  ,
(2 )( )

q

q

S t r h
D

h D
h

ϕ ϕ
ϕ

ϕ ϕ
ϕ

λ σ β β λ ϕ λ

σ β β λ ϕ λ

=
±

=

+ ± + − +
=

+ − +

∑

∑
 

2 2

1 1

.
(2 )( ) (2 )( )

q q

qh

h hϕ ϕ ϕ ϕ
ϕ ϕ

λρ
β β τ ϕ τ β β λ ϕ λ

= =

−′ =

+ − + ⋅ + − +∑ ∑
 

Straightforwardly, when 0ϕβ =  and 0h = , which means the underlying asset return is independent, 
the valuation model in this subsection can be reduced to the valuation model of a European-type reset call 
with m reset levels and continuous reset date derived by Liao and Chen (2006). 

NUMERICAL ANALYSES OF MA(1)-TYPE RESET OPTIONS 

Effects on the Value of Reset Options 

To capture the effect of autocorrelated underlying asset returns on the value of reset options, we make 
some numerical analysis to compare the difference between a MA(q)-type reset option and a 
non-autocorrelated reset option. For the simplification, we consider the MA(q)-type reset option with 
order 1q = . First, assume there are four MA(1)-type standard reset puts, and each reset put has a single 
reset date on 0.5t =  year from the initiation of contract. Assume these four MA(1)-type standard reset 
puts have the same original strike price 0 $40K = , risk-free rate 5%r = , volatility of the underlying 
asset 40%σ = , time to maturity 0 1T t− =  year, and autocorrelation persistence period 1 12h =  year. 
But these four MA(1)-type standard reset puts have different autocorrelation coefficients 

0.75,  0.5,  0.1,  0.2β = − − . Fig.1 demonstrates the value comparison between the non-autocorrelate 
( 0)β =  standard reset put and four MA(1)-type standard reset puts. Different from a vanilla put, Fig. 1 
shows that the reset characteristics makes the non-autocorrelated standard reset put and the MA(1)-type 
standard reset puts have the U-shaped behavior. From the Eq. (10), the MA(1)-type standard reset put 
with single reset right, we know that the value of the put (non-reset part) with the initial strike price, 2P , 
decreases when the stock price rises. But, the increasing stock price also increases the probability of reset 
and makes value of reset part, 1P , increases. This reset premium makes the reset put have the U-shaped 
behavior. To discuss the impact of autocorrelation of underlying asset returns on the reset put, the Eq. (10) 
can be further represented as follows. 
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From the Eq. (17), we know that when the underlying asset return is not autocorrelated, 2( )N d + , 

2( )N b −−  and 2( )N b +−  represent the probability that the reset put is reset and in the money at the 

maturity. *
2 2 3( , , )N d d ρ− +− − and *

2 2 3( , , )N d d ρ+ −− −  represent the probability that the reset put is not 
reset and become a vanilla in-the-money put at the maturity. After introducing the autocorrelation effect 
into the reset put, the probability of reset is affected. Even if the reset put is not reset, the autocorrelation 
effect still affects the probability that the reset put is in the money at the maturity. 

Compared to the non-autocorrelated standard reset put, Figure 1 demonstrates that when the 
autocorrelation of underlying asset returns is positive (negative) which means 0β >  ( 0β < ), the 
values of the MA(1)-type standard reset puts have higher (lower) values than that of the 
non-autocorrelated standard reset put. Because the positive (negative) shock introduced by MA(1)-type 
process increases (decreases) the volatility of underlying asset returns, which also increases (decreases) 
the probability of reset. Due to the increasing (decreasing) probability of reset, a MA(1)-type standard 
reset put has more (less) reset premium than the non-autocorrelated standard reset put. As the degree of 
positive (negative) autocorrelation increases, the increasing (decreasing) probability of reset makes the 
difference between the MA(1)-type standard reset put and the non-autocorrelated standard reset put 
further increase. 

Figure 1: Value Comparison between Non-autocorrelated Standard Reset Put and MA(1)-type Standard 
Reset Puts when Time to Maturity is One Year 

 
Figure 1 shows the value of different standard reset puts with 0.75,  0.5,  0, -0.1,  -0.15β =  under different stock price. Assume reset date is 

0.5t =  year from buying the option, original strike price is 
0 $40K = , risk-free rate is 5%r = , volatility of the underlying asset is 40%σ = , 

time to maturity is 
0 1T t− =  year, and autocorrelation persistence period is 1 12h =  year. We find that the reset option with positive 

autocorrelation has a higher (lower) value than the non-autocorrelated reset option. 
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Compared to the MA(1) process, if the past shocks are in the same direction (all 0ϕβ >  or all 0ϕβ < , 
where 1,  2,  ,  qϕ =  ), the impact of the positive or negative autocorrelation captured by the MA(q) 
process on the reset put is augmented. However, if the past shocks are in different directions (some 

0ϕβ > , and some 0ϕβ < ), the impact of autocorrelation would be uncertain. Fig. 2 demonstrates this 

phenomenon between the MA(1)-type reset put and the MA(2)-type reset put. When the 1β  and 2β  
are all positive (negative), the probability of reset would be much higher (lower), and the value of reset 
put would increase (decrease) more.  However, if the signs of 1β  and 2β  are different, the 
interaction of 1β  and 2β  would have a uncertain impact on the reset put, which means the value of 
reset put might be increase or decrease. 
 
Figure 1: Value Comparison among Non-autocorrelated Standard Reset Put, MA(1)-type Standard Reset 
Puts, and MA(2)-type Standard Reset Puts when Time to Maturity is One Year 

 

Figure 2 shows the values of non-autocorrelated reset put ( 0β = ), MA(1)-type reset puts (
1 0.1,  0.05β = − ), and MA(2)-reset puts 

(
1 2( ,  ) (0.1,  0.2),  (0.1,  0.2),  ( 0.05,  0.05), ( 0.05,  0.1)β β = − − − − ) under different stock price. Assume reset date is 0.5t =  year from buying 

the option, original strike price is 
0 $40K = , risk-free rate is 5%r = , volatility of the underlying asset is 40%σ = , time to maturity is 

0 1T t− =  years, and autocorrelation persistence period is 1 365h =  year. Compared to the MA(1)-type reset put, the value of the 
MA(2)-type reset put becomes much larger (smaller) when both 

1β  and 
1β  are positive (negative). However, if the signs of 

1β  and 
1β  are 

different, the impact of autocorrelation would be uncertain. 
 
Moreover, we find that the effect of autocorrelation characteristics on other type of reset options, such as 
a reset option with m reset levels, is consistent with the effect on standard reset options. Consider five 
reset calls with three reset levels which are the common practical cases. Assume the original strike price is 

0 $100K = , risk-free rate is 5%r = , three reset levels are 1 2 3( , , ) (80,70,60)D D D = , time to maturity 
is 0 1T t− =  year, autocorrelation persistence period is 1 365h =  year, and the autocorrelation is 

0.2,  0.1,  0,  0.25,  0.4β = − −  respectively. Table 1 and Table 2 demonstrate the value comparison of 
these five reset calls when the reset period is 0 0 1 12T t− =  year and 0 0 3 12T t− =  year respectively, 
given different stock prices 0( ) $80,  $100,  $115S t = , volatility 30%,  50%σ = , and corresponding reset 
strike prices (K1, K2, K3). 

From Table 1 and Table 2, we first find that if the autocorrelation of underlying asset return is positive, 
the value of the MA(1)-type reset call with three reset levels is higher than that of the non-autocorrelated 
reset call with the same reset levels. If the autocorrelation of underlying asset return is negative, the value 
of the MA(1)-type reset call with three reset levels is lower than that of the standard reset call with the 
same reset levels. The difference in value increases (decreases) as the autocorrelation becomes more 
positive (negative). Second, under the same reset levels 1 2 3( , , ) (80,70,60)D D D = , the reset call has a 
higher value with lower reset strike prices ( )1 2 3, ,K K K . Third, in cases of higher stock price than reset 
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levels and the lower volatility of stock returns, the value of a non-autocorrelated reset call reduces to the 
vanilla call, and the value of a MA(1)-type reset call reduces to the MA(1)-type vanilla call. Also, we find 
that when the duration of the reset period increase (from one month to three month), both the value of the 
MA(1)-type reset call and the non-autocorrelated reset call increase. 

Table 1: Comparison between Non-autocorrelated Reset Calls and MA(1)-type Reset Calls, with Three 
Reset Levels and One Month Reset Period 
 

σ  
0( )S t  ( )1 2 3, ,K K K  

Degree of Autocorrelation 

0.2β = −  0.1β = −  0β =  0.25β =  0.4β =  

30% 

85 (80,70,60) 7.0372 8.4260 9.7863 13.0876 15.0047 
(85,75,65) 6.1443 7.4288 8.6996 11.8306 13.6751 
(90,80,70) 5.4349 6.6145 7.7947 10.7486 12.5146 

100 (80,70,60) 11.9738 13.1254 14.2978 17.3279 19.2051 
(85,75,65) 11.9705 13.1157 14.2761 17.2473 19.0726 
(90,80,70) 11.9680 13.1079 14.2579 17.1783 18.9577 

115 (80,70,60) 22.9370 23.8748 24.8644 27.4917 29.1423 
(85,75,65) 22.9370 23.8748 24.8643 27.4902 29.1370 
(90,80,70) 22.9370 23.8748 24.8643 27.4888 29.1324 

50% 

85 (80,70,60) 14.3718 16.4713 18.5189 23.4302 26.2379 
(85,75,65) 13.0191 15.0578 17.0588 21.9058 24.7027 
(90,80,70) 11.8451 13.8130 15.7592 20.5241 23.3008 

100 (80,70,60) 18.4484 20.5733 22.7227 28.1105 31.2999 
(85,75,65) 18.3210 20.3795 22.4563 27.6632 30.7569 
(90,80,70) 18.2114 20.2093 22.2196 27.2584 30.2617 

115 (80,70,60) 28.4268 30.2935 32.2105 37.1745 40.2297 
(85,75,65) 28.4223 30.2811 32.1838 37.0819 40.0820 
(90,80,70) 28.4185 30.2703 32.1601 36.9982 39.9474 

Table 1 shows the value of different reset calls with different stock price 
0( ) $85,  $100,  $115S t = , different reset strike price 

1 2 3( , , ) (80, 70, 60),  (85, 75, 65),  (90,80, 70)K K K = , and different volatility 30%,  50%σ = , given 0.2,  0.1,  0, 0.25,  0.4β = − − . Assume 
original strike price is 

0 $40K = , risk-free rate is 5%r = , time to maturity is 
0 1T t− =  year, reset period is 

0 0 1 12T t− =  year, and 
autocorrelation persistence period is 1 365h =  year. 
 
Table 2: Comparison between Non-autocorrelated Reset Calls and MA(1)-type Reset Calls, with Three 
Reset Levels and Three Months Reset Period 
 
σ  

0( )S t  ( )1 2 3, ,K K K  Degree of Autocorrelation 
0.2β = −  0.1β = −  0β =  0.25β =  0.4β =  

30% 85 (80,70,60) 8.8218 10.3992 11.8476 15.3117 17.2997 
(85,75,65) 7.2630 8.7791 10.1582 13.4891 15.4285 
(90,80,70) 6.0653 7.4622 8.7552 11.9249 13.8003 

100 (80,70,60) 12.3346 13.7600 15.1891 18.8338 21.0373 
(85,75,65) 12.1819 13.5321 14.8773 18.3020 20.3826 
(90,80,70) 12.0757 13.3509 14.6216 17.8512 19.8191 

115 (80,70,60) 22.9514 23.9209 24.9671 27.8582 29.7426 
(85,75,65) 22.9452 23.9046 24.9330 27.7425 29.5578 
(90,80,70) 22.9409 23.8918 24.9051 27.6452 29.4000 

50% 85 (80,70,60) 16.7147 18.9395 21.0248 25.9087 28.6384 
(85,75,65) 14.7320 16.9865 19.0633 23.9577 26.7194 
(90,80,70) 13.0382 15.2718 17.3220 22.1952 24.9729 

100 (80,70,60) 20.2613 22.8048 25.2422 31.1031 34.4358 
(85,75,65) 19.5642 22.0078 24.3382 29.9863 33.2357 
(90,80,70) 18.9879 21.3129 23.5391 28.9809 32.1469 

115 (80,70,60) 28.9805 31.1902 33.4455 39.2145 42.6657 
(85,75,65) 28.7919 30.9217 33.0859 38.6256 41.9590 
(90,80,70) 28.6400 30.6888 32.7688 38.0968 41.3193 

Table 2 shows the value of different reset calls with different stock price 
0( ) $85,  $100,  $115S t = , different reset strike price 

1 2 3( , , ) (80, 70, 60),  (85, 75, 65),  (90,80, 70)K K K = , and different volatility 30%,  50%σ = , given 0.2,  0.1,  0, 0.25,  0.4β = − − . Assume 
original strike price is 

0 $40K = , risk-free rate is 5%r = , time to maturity is 
0 1T t− =  year, reset period is 

0 0 3 12T t− =  year, and 
autocorrelation persistence period is 1 365h =  year. 
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Effects on the Reset Timing of Reset Options 

Recall that a reset option may allow a holder to choose reset time discretionarily, and whether the option 
value is maximized depends on the timing that the holder elects to exercise their reset right. Figure 3 
demonstrates the optimal reset timing for a non-aotocorrelated reset put ( 0)β =  and four MA(1)-type 
reset puts ( 0.75,  0.5,  0.04)β = − . Assume the initial stock price is 0 $40S = , original strike price is 

0 $40K = , risk-free rate is 5%r = , volatility of the underlying asset is 40%σ = , time to maturity is 
0 2T t− =  years, and autocorrelation persistence period is 1 12h =  year. 

Figure 2: Optimal Reset Timing Comparison between the Non-autocorrelated Standard Reset Put and 
MA(1)-type Standard Reset Puts 

 

Figure 3 shows the optimal reset timing of different shout puts with 0.75,  0.5,  0,  0.04β = −  under different stock price. Assume initial stock 
price is 

0 $40S = , original strike price is 
0 $40K = , risk-free rate is 5%r = , volatility of the underlying asset is 40%σ = , and 

autocorrelation persistence period is 1 12h =  year. We find that the positive (negative) autocorrelation makes the optimal reset timing earlier 
(later). 
 
Figure 3 shows that, for a non-aotocorrelated reset put, the optimal reset timing is 1.13 years from the 
initial time of the put. However, if the underlying asset return has positive autocorrelation, the optimal 
reset timing for a MA(1)-type reset put is advanced. The optimal reset timings of MA(1)-type reset puts 
with 0.75β =  and 0.5β =  are 1.06 years and 1.07 years respectively. If the autocorrelation is 
positive, this positive shock makes the volatility of underlying asset returns increase. Holders of the 
positive MA(1)-type reset puts have more uncertainty of the underlying assets price movement. Therefore, 
rational holders of the MA(1)-type reset puts tend to reset earlier to protect themselves from possible loss. 
On the other hand, if the underlying asset return has negative autocorrelation, we find that the optimal 
reset timing for a MA(1)-type reset put is postponed. The optimal reset timings of MA(1)-type reset puts 
with 0.04β = −  is 1.14 years. Because the negative autocorrelation decreases the volatility of 
underlying asset returns, holders of the MA(1)-type reset puts have more certainty that the underlying 
asset price would not change too much. Therefore, to wait for more profit, holders tend to delay their reset 
timing. 
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Figure 3: Delta Jumps of Three Reset Calls with Different Degrees of Positive Autocorrelation under 
Volatility 30% 

 

Figure 4 shows the delta jumps of three reset calls with different degree of positive autocorrelation 0,  0.4,  0.8β = , same five reset levels 

1 2 3 4 5( , , , , ) (70, 60, 50, 40, 30)D D D D D = . Assume the original strike price is 
0 $80K = , risk-free rate is 5%r = , volatility is 30%σ = , time to 

maturity is 
0 1T t− =  year, reset period is 

0 0 1 12T t− =  year, autocorrelation persistence period is 1 365h =  year, and reset strike prices 
are 

1 2 3 4 5( , , , , ) (70, 60, 50, 40, 30)K K K K K = . We find that the positive autocorrelation decrease the delta jumps problems. 

Effects on the Delta Jump and the Gamma Jump of Reset Options 

Following the study of Liao and Chen (2006) and introducing MA(1)-process, the delta of the reset call 
with m reset levels can be represented as: 
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It is well known that the delta jump problem makes hedging difficult for reset options. When the holders 
of the reset option reset their strike prices, the reset option changes from an out-of-money option into an 
in-of-money option, which causes a significant change of delta (delta jump). We can also explain the 
phenomenon of delta jump from Eq. (20). Because the strike prices of 1,i i

tDOC −  and ,i i
tDOC  are 

different, 
1, ,

( ) ( )( )
i i i i
t tDOC DOC

S t S t

−∂ ∂
∂ ∂−  would not equal zero. Therefore, if the stock price touches any of the reset 

barriers, the delta jump happens. For example, consider three reset calls with the same contract terms, 
except for the different degrees of autocorrelation 0,  0.4,  0.8β = . Assume these three reset calls have 
the same initial original strike price 0 $80K = , five reset levels 

1 2 3 4 5( , , , , ) (70,60,50,40,30)D D D D D = , risk-free rate 5%r = , five corresponding reset strike prices 

( )1 2 3 4 5, , , , (70,60,50,40,30)K K K K K = , time to maturity 0 1T t− =  year, and reset period 

0 0 1 12T t− =  year. Figure 4 and Table 3 demonstrate the comparisons of delta jump between the 
non-autocorrelated reset call and two positive autocorrelation reset calls under volatility 30%σ = . 
Figure 5 and Table 4 demonstrate the comparisons of delta jump between the non-autocorrelated reset call 
and two negative autocorrelation reset calls under a higher volatility 30%σ = . 
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Table 3: Delta Gap Comparison of Three Reset Calls with Different Degree of Positive Autocorrelation 
under Volatility 30% 

 Stock Price 
30 40 50 60 70 

0β =  1.0869 0.9522 0.8237 0.7144 0.6277 

0.4β =  0.8498 0.6980 0.5818 0.4981 0.4361 

0.8β =  0.6737 0.5297 0.4383 0.3745 0.3268 

Table 3 shows that, under the lower volatility 30%σ = , as the degree of autocorrelation increases, delta gaps of MA(1)-type reset calls with 
positive autocorrelation become more lower than that of the non-autocorrelated reset call. 
 
Figure 4: Delta Jumps of Three Reset Calls with Different Degrees of Negative Autocorrelation under 
Volatility 30% 

 

Figure 5 shows the delta jump of three reset calls with different degree of negative autocorrelation 0,  -0.1,  -0.2β = , same five reset levels 

1 2 3 4 5( , , , , ) (70, 60, 50, 40, 30)D D D D D = . Assume the original strike price is 
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0 0 1 12T t− =  year, autocorrelation persistence period is 1 365h =  year, and reset strike prices 
are 

1 2 3 4 5( , , , , ) (70, 60, 50, 40, 30)K K K K K = . We find that the negative autocorrelation makes the delta jumps more serious than the 
non-autocorrelated reset option. 
 
From Figure 4, we find that, whether for the non-autocorrelated reset call or MA(1)-type reset calls, the 
delta jumps happen whenever the stock price touches the reset barriers. However, the degree of delta 
jumps of MA(1)-type reset calls with positive autocorrelation is lower than that of the non-autocorrelated 
reset call. We measure this degree of delta jump by delta gap which is the difference of delta before reset 
timing and after reset timing. Table 3 shows that, under the lower volatility 30%σ = , as the degree of 
autocorrelation increases, delta gaps of MA(1)-type reset calls with positive autocorrelation become more 
lower than that of the non-autocorrelated reset call. For example, when the reset barrier is $30, the higher 
degree of positive autocorrelation makes the delta gap decrease from 1.0869 to 0.6737. When the stock 
price decreases becomming closer to the reset barrier, due to the fact that the strike price can be adjusted 
to a new higher level if the stock the stock price actually touches the barrier, the reset call is more 
valuatable. Moreover, because the MA(1)-type reset call with positive autocorrelation causes a higher 
probability of reset than the non-autocorrelated reset call, the value of MA(1)-type reset call is even 
higher than that of the non-autocorrelated reset call near the reset barrier. And, the associated delta of 
MA(1)-type reset call with positive autocorrelation is highr than that of the non-autocorrelated reset call 
near the reset barrier. 
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Table 4: Delta Gap Comparison of Three Reset Calls with Different Degrees of Negative Autocorrelation 
under Volatility 30% 
 

 Stock Price 
30 40 50 60 70 

0β =  1.0869 0.9522 0.8237 0.7144 0.6277 

0.1β = −  1.1542 1.0328 0.9074 0.7945 0.7007 

0.2β = −  1.2219 1.1221 1.0033 0.8898 0.7900 

Table 4 shows the comparisons of delta jumps between the non-autocorrelated reset call and two MA(1)-type reset calls with negative 
autocorrelation, i.e. -0.1β =  and -0.2β = . For the MA(1)-type reset calls with negative autocorrelation, because the negative autocorrelation 
of asset return makes the probability of reset near the barriers decrease, the value and the delta of the MA(1)-type reset calls with negative 
autocorrelation are less than that of the non-autocorrelated reset call. Therefore, the negative autocorrelation causes the delta gap to be larger. 
 
Besides the hedging difficulty of delta jump, gamma jump is another problem for hedgeing. Recall that 
gamma measures the rate of change in delta as the underlying stock price changes. In other words, gamma 
can be viewd as a measure of how poorly a dynamic delta hedge would perform when it is not rebalanced 
in response to a change in the asset price. Figure 6 demonstrates that gamma jumps happen whenever the 
stock price touches reset barriers. When the stock price decreases becomming closeser to the reset barrier, 
gamma tends to increase because the foreseen delta jump would make the delta change dramatically. This 
means that the performance of a dynamic hedge is quite poor near every reset barrier. However, the 
positive (negative) autocorrelation actually decreases (increases) the problem of gamma jump. The 
advantage of positive autocorrelation effect on the hedging of reset options is the most significant 
contribution of this paper. 
 
Figure 5: Gamma Jumps of Three Reset Calls with Different Degrees of Autocorrelation under Volatility 
30% 

 

Figure 6 shows the gamma jumps of reset calls with different degrees of positive autocorrelation 0,  0.4,  0.8β =  and negative autocorrelation 
0,  -0.1,  -0.2β = , same five reset levels (D1, D2, D3, D4, D5)=(70,60,50,40,30). Assume the original strike price is 

0 $80K = , risk-free rate is 
5%r = , volatility is 30%σ = , time to maturity is 

0 1T t− =  year, reset period is 
0 0 1 12T t− =  year, autocorrelation persistence period is 

1 365h =  year, and reset strike prices are (K1, K2, K3, K4, K5)=(70,60,50,40,30). We find that the positive autocorrelation decreases the gamma 
jumps and the negative autocorrelation increases the gamma jumps 
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CONCLUSIONS 

The main contribution of this paper is to demonstrate the impact of underlying assets’ autocorrelation on 
reset options. The autocorrelation of asset returns is a pervasive phenomenon in the financial field. This 
autocorrelation characteristic affects not only the dynamic process of asset prices, but some characteristics 
of the reset option. We apply the MA(q) process.  This process is an extension of the MA(1) process 
mentioned by Liao and Chen (2006) who extracted the autocorrelation of financial asset returns from the 
asset returns’ first moment through the form of a first-order moving average process.  

We develop modified models for different types of reset options with reset clause on the strike prices. For 
a MA(1)-type reset option, we find that the positive (negative) autocorrelation of underlying asset returns 
makes the volatility of underlying assets, reset probability, and the value of reset option increase 
(decrease). Furthermore, we find that the positive autocorrelation of underlying asset returns makes the 
holder of the reset option tend to reset earlier, which prevents a possible loss. To the contrary, the negative 
autocorrelation of underlying assets makes the holder of the reset option tend to reset later because the 
small volatility of the underlying asset weakens the advantage of reset. On the other hand, the effect of 
underlying assets’ autocorrelation on hedging of the reset option is also an important contribution in this 
paper. When the holder of the reset option resets their strike price, the reset option changes from an 
out-of-money option into an in-of-money option, which causes significant changes of delta (delta jump) 
and gamma (gamma jump). Although the problem of delta jump and gamma jump still exist in the reset 
option, we find that the positive autocorrelation of underlying assets actually lessen the degree of delta 
jump and gamma jump. 

This paper has some limitations.  First, the paper only considers autocorrelation characteristics of asset 
returns from the asset returns’ first moment through the form of a first-order moving average process.  
Further research, might consider other different dynamic pricing processes to capture the autocorrelation, 
such as ARCH or GARCH models. Instead of autocorrelation, one can also capture the predictability of 
underlying asset returns from other exogenous variables. One can discuss the effect of different types of 
asset predictability on the reset option. Second, besides considering the single stock price as the reset 
trigger, further research can consider the reset option using average prices as a reset trigger. This type of 
reset option is very common in practice. If average price is used as the reset trigger, the impact of 
predictability of underlying asset return might be augmented. One can discuss the effect of the 
predictability of asset returns on this type of reset option. Third, this paper only focuses on the reset 
option with reset clause on the strike price. Further research might consider other reset options with 
different reset clauses, such as the reset clause on the maturity date. This type of reset option gives the 
holder a right to postpone the maturity date of the reset option. One can discuss the effect of predictability 
of asset returns on this type of reset option. Last, the reset conditions in this paper are based on the 
underlying asset. Further research might consider other reset options whose reset conditions are related to 
the other particular events, such as the credit quality of a firm. For example, a reset option may be 
designed to allow the holders to reset the strike price if the credit rating of firm decreases to certain level. 
One can discuss the impact on this type of reset option if the underlying asset returns or credit quality are 
predictable. 
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