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ABSTRACT 

 
Recently academic researchers and practitioners have use the asymptotic expansion method to examine a 
variety of financial issues under high-dimensional stochastic environments. This methodology is 
mathematically justified by Watanabe theory (Watanabe, 1987), and Malliavin calculus (Yoshida, 
1992a,b) and essentially based on the framework initiated by Kunitomo and Takahashi (2003) and 
Takahashi (1995, 1999) in a financial context.  In practical applications, it is desirable to investigate the 
accuracy and stability of the method especially with expansion to higher orders in situations where the 
underlying processes are highly volatile.  After Takahashi (1995,1999) and Takahashi and Takehara 
(2007) provided explicit formulas for the expansion to the third order, Takahashi, Takehara and Toda 
(2009) develop general computation schemes and formulas for an arbitrary-order expansion under 
general diffusion-type stochastic environments. In this paper, we describe these techniques in a simple 
setting to illustrate thier key ideas.  To demonstrate their effectiveness the techniques are applied to 
pricing long-term currency options. 
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INTRODUCTION 
 

his paper explains two alternative computation schemes proposed by Takahashi, Takehara and 
Toda (2009).  The work is based on the asymptotic expansion approach based on Watanabe 
theory (Watanabe, 1987) in Malliavin calculus.  The explanation is provided in a simple setting 

and applied to pricing long-term currency options under a cross-currency Libor market model and general 
stochastic volatility of  spot exchange rates.   
 
Recently, academic researchers and practitioners have used the asymptotic expansion method for a variety 
of financial issues. e.g. pricing or hedging complex derivatives under high-dimensional underlying 
stochastic environments.  These methods are fully or partially based on the framework developed by 
Kunitomo and Takahashi (1992), Takahashi (1995,1999) in a financial literature.  In theory, this method 
provides the expansion of underlying stochastic processes.  This has a proper meaning in the limit of 
some ideal situations including deterministic cases (for details see Watanabe, 1987; Yoshida, 1992a; or 
Kunitomo and Takahashi, 2003).  
 
In practice, however, researchers are often interested in cases far from the ideal, where the underlying 
processes are highly volatile as seen in recent financial markets.  From the view point of accuracy and 
stability in practical uses, it is desirable to investigate behaviors of estimators with expansion to high 
orders.  
 
 

T 
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In asymptotic expansion applications, the crucial step is computation of conditional expectations 
appearing in expansions, especially in expansion to high orders which is important in cases with long 
maturities or/and with highly volatile underlying variables. Takahashi, Takehara and Toda (2009) 
developed two alternative schemes for these computations in a general diffusion-type stochastic 
environment.  
 
This paper describes the essence of their method in a much simpler setting and applies them to the 
evaluation of long-term currency options with maturities up to twenty years under a cross-currency Libor 
market model and general stochastic volatility of a spot exchange rates.  It is very complex to obtain 
closed-form formulas in this instance. The remainder of the paper is as follows: In the following section 
we discuss the relevant literature.  Next our methods are developed in simple setting, Section 3 applies 
the algorithms described in the previous section to concrete financial models, and confirms the 
effectiveness of the higher order expansions by numerical example.  Detailed proofs, formulas and 
argument of the applied technique in a general setting including our complex example are found in 
Takahashi, Takehara and Toda (2009).   
 
LITERATURE REVIEW 
 
In this subsection we briefly review literature related to asymptotic expansion.  The first known 
application of asymptotic expasion based on Watanabe theory in finance was Kunitomo and Takahashi 
(1992) who evaluated average options. Kunitomo and Takahashi (1992) and Takahashi (1995) derive  
approximation formulas for an average option by an asymptotic method.  Their method is based on 
log-normal approximations of an average price distribution when the underlying asset price follows a 
geometric Brownian motion process. Yoshida (1992b) applies a formula derived by the asymptotic 
expansion of certain statistical estimators for small diffusion processes.  
 
Thereafter asymptotic expansion has been applied to a broad class of problems in finance. In a general 
setting, the basic framework of the method was described in Kunitomo and Takahashi (2003), Takahashi 
(1999, 2009). Kunitomo and Takahashi (2001) generalized and applied the method to interest derivatives 
where the underlying model was not necessarily Markovian. Matsuoka, Takahshi and Uchida (2004) 
computed Greeks, the sensitivities of derivatives with respect to parameters. In Takahashi and Yoshida 
(2004, 2005) the method was used for the optimal portfolio problem and a new variance reduction 
technique for Monte Carlo simulations with the asymptotic expansion was developed. Muroi (2005) 
considered credit derivatives. Pricing currency options under the cross-currency Libor market model and 
exchange rates with sotchastic volatility and/or jumps, were examined in Takahashi and Takehara (2007,  
2008a,b). Takahashi, Takehara and Toda [2009] introduced genral procedures for actual computation in 
the method which are applied in this paper. 

AN ASYMPTOTIC EXPANSION APPROACH IN A BLACK-SCHOLES ECONOMY 

In this section, we explain the concepts of this paper in a simple Black-Scholes-type economy. Let 
( )W P,  be a one-dimensional Wiener space. Hereafter P  is considered as a risk-neutral equivalent 
martingale measure and a risk-free interest rate is set to be zero for simplicity. Then, the underlying 
economy is specified with a ( +R -valued) single risky asset ( ) ( )

tS {S }ε ε=  satisfying:  
( ) ( )

0 0
( )

t

t s sS S S s dWε εε σ= + ,∫              (1) 

where (0 1]ε ∈ ,  is a constant parameter; σ : 2
+R R  satisfies some regularity conditions. We will 

consider the following pricing problem;  
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( )(0 ) [ ( )]TV T S ε, = ΦE               (2) 

where Φ  is a payoff function written on ( )
TS ε  (for example, ( ) max( 0)x x KΦ = − ,  for call options or 

( ) ( )xx xδΦ = , a delta function with mass at x  for the density function) and [ ]⋅E  is an expectation 
operator under the probability measure P . Rigorously speaking, they are a generalized function of the 
Wiener function ( )S ε  and a generalized expectation for generalized functions, whose mathematically 
proper definitions are given in Section 2 of Takahashi, Takehara and Toda (2009).  
 
Let 

( )

0

k
t
k

S
ktA

ε

εε
∂

=∂
= | . Here we represent 1tA , 2tA  and 3tA  explicitly by  

(0)
1 0

( )
t

t s sA S s dWσ= , ,∫               (3) 

(0)
2 10

2 ( )
t

t s s sA S s A dWσ= ∂ , ,∫   (4) 

( )2 (0) 2 (0)
3 1 20

3 ( )( ) ( )( )
t

t s s s s sA S s A S s A dWσ σ= ∂ , + ∂ ,∫  (5) 

 
recursively and then ( )

TS ε  has its asymptotic expansion  
2 3

( ) 3
0 1 2 3 ( )

2 3T T T TS S A A A oε ε εε ε= + + + + .
! !

  (6) 

Note that (0) ( )
00limt tS S Sε

ε↓= =  for all t . Next, normalize ( )
TS ε  with respect to ε  as 

( ) (0)( ) T TS SG
εε
ε
−=  for (0 1]ε ∈ , . Then,  

2
( ) 2

1 2 3 ( )
2 3T T TG A A A oε ε ε ε= + + +
! !

  in PL  for every 1p > .  

Here the following assumption is made: 2 (0)

0
( ) 0

T

T tS t dtσΣ = , > .∫  Note that 1TA  follows a normal 

distribution with mean 0  and variance TΣ , implying that the distribution of 1TA  does not degenerate. 

It is clear that this assumption is satisfied when (0)( ) 0tS tσ , >  for some 0t > . Then, the expectation of 
( )( )G εΦ  is expanded around 0ε =  up to 2ε -order in the sense of Watanabe (1987) and Yoshida 

(1992a) as follows.  Hereafter the asymptotic expansion of ( )[ ( )]G εΦE  up to the second order will be 
considered:  
 

[ ]( ) (1)
1 1 2[ ( )] ( ) ( )T T TG A A Aε ε  

  
Φ = Φ + ΦE E E 2 (1) (2) 2 2

1 3 1 2
1( ) ( )( ) ( )
2T T T TA A A A oε ε

 
    
        
 

+ Φ + Φ +E E  

[ ] (1)
1 1 2 1( ) ( )T T T TA A A Aε   

    
= Φ + Φ |E E E

2 (1) (2) 2 2
1 3 1 1 2 1

1( ) ( ) ( ) ( )
2T T T T T TA A A A A A oε ε

 
                  

 

+ Φ | + Φ | +E E E E  

[ ]
1 1

(1)
2 1( ) ( ) ( ) ( )

T TA T T Ax f x dx x A A x f x dxε= Φ + Φ | =∫ ∫R R
E  

[ ]
1 1

2 (1) (2) 2 2
3 1 2 1

1( ) ( ) ( ) ( ) ( ) ( )
2T TT T A T T Ax A A x f x dx x A A x f x dx oε ε  + Φ | = + Φ | = +   ∫ ∫R R

E E  
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1 12 1( ) ( ) ( )( 1) ( )
T TA T T Ax f x dx x { A A x f x }dx

x
ε ∂

= Φ + Φ −  =  ∂∫ ∫R R
E

1

2
3 1( )( 1) ( )

TT T Ax { A A x f x }dx
x

ε ∂+ Φ −  =   ∂ ∫R E

1

2
2 2 2

2 12

1 ( )( 1) ( ) ( ) ( )
2 TT T Ax { A A x f x }dx o

x
ε

∂  + Φ − = + . ∂ 
∫R E  (8) 

 
where ( ) ( )m xΦ  is m -th order derivative of ( )xΦ  and 

1
( )

TAf x  is a probability density function of 

1TA  following a normal distribution; ( )2

1

1
22

( ) exp
T TT

x
Af x

π ΣΣ
:= − .  In particular, letting xδΦ = , we 

have the asymptotic expansion of the density function of ( )G ε  as seen later.   Then, to evaluate this 
expansion a computation of these conditional expectations is completed. Specifically, we present two 
alternative approaches.  

ôAn Approach with an Expansion into Iterated It  Integrals 

In this subsection we show an approach with further expansion of 2TA , 3TA  and 2
2( )TA  into iterated It

ô  integrals to compute the conditional expectations in (8). Recall that we have:  

1 1

( )
2 1[ ( )] ( ) ( ) ( )( 1) ( )

T TA T T AG x f x dx x { A A x f x }dx
x

ε ε ∂
Φ = Φ + Φ −  =  ∂∫ ∫R R

E E

1

2
3 1( )( 1) ( )

TT T Ax { A A x f x }dx
x

ε ∂+ Φ −  =   ∂ ∫R E

1

2
2 2 2

2 12

1 ( )( 1) ( ) ( ) ( )
2 TT T Ax { A A x f x }dx o

x
ε

∂  + Φ − = + . ∂ 
∫R E  

  (9) 
 
Next, it is shown that 2TA , 3TA , 2

2( )TA  can be expressed as summations of iterated It ô  integrals. 
First, note that 2TA  is:  

1

1 2 2 1

(0) (0)
2 1 20 0

2 ( ) ( )
T t

T t t t tA S t S t dW dWσ σ= ∂ , ,∫ ∫   (10) 

 
Next, by application of It ô ’s formula to (5) we obtain  
 

1 2

1 2 3 3 2 1

(0) (0) (0)
3 1 2 30 0 0

6 ( ) ( ) ( )
T t t

T t t t t t tA S t S t S t dW dW dWσ σ σ= ∂ , ∂ , ,∫ ∫ ∫
1 2

1 2 3 3 2 1

2 (0) (0) (0)
1 2 30 0 0

6 ( ) ( ) ( )
T t t

t t t t t tS t S t S t dW dW dWσ σ σ+ ∂ , , ,∫ ∫ ∫
1

1 2 1

2 (0) 2 (0)
1 2 20 0

3 ( ) ( )
T t

t t tS t S t dt dWσ σ+ ∂ , , .∫ ∫  

  (11) 
Similarly,  
 

1 2 3

1 2 3 4 4 3 2 1

2 (0) (0) (0) (0)
2 1 2 3 40 0 0 0

( ) 16 ( ) ( ) ( ) ( )
T t t t

T t t t t t t t tA S t S t S t S t dW dW dW dWσ σ σ σ= ∂ , ∂ , , ,∫ ∫ ∫ ∫
1 2 3

1 2 3 4 4 3 2 1

(0) (0) (0) (0)
1 2 3 40 0 0 0

8 ( ) ( ) ( ) ( )
T t t t

t t t t t t t tS t S t S t S t dW dW dW dWσ σ σ σ+ ∂ , , ∂ , ,∫ ∫ ∫ ∫

90



The International Journal of Business and Finance Research ♦ Volume 5 ♦ Number 3 ♦ 2011 
 

1 2

1 2 3 2 1

(0) (0) 2 (0)
1 2 3 30 0 0

8 ( ) ( ) ( )
T t t

t t t t tS t S t S t dt dW dWσ σ σ+ ∂ , ∂ , ,∫ ∫ ∫
1 2

1 2 2 3 3 1

(0) (0) (0) (0)
1 2 2 3 20 0 0

8 ( ) ( ) ( ) ( )
T t t

t t t t t tS t S t S t S t dW dt dWσ σ σ σ+ ∂ , ∂ , , ,∫ ∫ ∫  

( )1 2

1 2 3 3 2

2(0) (0) (0)
1 2 3 10 0 0

8 ( ) ( ) ( )
T t t

t t t t tS t S t S t dW dW dtσ σ σ+ ∂ , , ,∫ ∫ ∫ ( )1

1 2

2(0) 2 (0)
1 2 2 10 0

4 ( ) ( )
T t

t tS t S t dt dtσ σ+ ∂ , , .∫ ∫  

  (12) 
 
Then, by Proposition 1 in Takahashi, Takehara and Toda (2009), the conditional expectations in (9) can be 
computed as  

(0) (0) (0) 2 2 12
2 1 2 2 22

( )[ ] 2 ( ) ( )T
T T T

T

H xA A x F c H xσ σ σ , 
 
 

;Σ
| = = ∂ , =: ;Σ

Σ
E  (13) 

(0) (0) (0) (0) (0) 2 2 (0) (0) (0) 2 (0) 2 3
3 1 3 3 3

( )[ ] 6 ( ) 6 ( ) ( ) T
T T

T

H xA A x F Fσ σ σ σ σ σ σ σ σ    
    

    

;Σ
| = = ∂ ,∂ , + ∂ , ,

Σ
E  

(0) (0) (0) 2 1
2

( )3 ( ) T

T

H xF σ σ σ 
 
 

;Σ
+ ∂ ,

Σ
  (14) 

3 1 3 1
3 3 1 1( ) ( )T Tc H x c H x, ,=: ;Σ + ;Σ  

 
and  
 

2
2 1[( ) ]T TA A x| =E

(0) (0) (0) (0) (0) 2 (0) 2 (0) (0) (0) 2 (0) (0) (0) 2 4
4 4 4

( )16 ( ) ( ) 8 ( ) ( ) T

T

H xF Fσ σ σ σ σ σ σ σ σ σ σ σ    
    

    

;Σ
= ∂ ,∂ , , + ∂ , ,∂ ,

Σ
 

(0) (0) (0) (0) (0) 2 (0) 2 (0) 2 (0) 2 2
3 3 2

( )16 ( ) 8 ( ) ( ) ( ) T

T

H xF Fσ σ σ σ σ σ σ σ    
    

    

;Σ
+ ∂ ,∂ , + ∂ , ,

Σ
 

(0) 2 (0) 2
3 04 ( ) ( ) ( )TF H xσ σ 
 
 

+ ∂ , ;Σ 2 2 2 2 2 2
4 4 2 2 0 0( ) ( ) ( )T T Tc H x c H x c H x, , ,=: ;Σ + ;Σ + ;Σ  (15) 

 
where ( )nH x;Σ  is a n -th order Hermite polynomial defined by  

2 22 2( ) ( )
n

n x x
n n

dH x e e
dx

/ Σ − / Σ;Σ := −Σ ,  

1 1

1 1 1 10 0 0
with notations ( ) ( ) ( ) 1nT t t

n n n n nF f f f t f t dt dt n−, , := , ≥ ,∫ ∫ ∫     
(0) (0)( )tS tσ σ= ,  and (0) (0)( )i i

tS tσ σ∂ = ∂ , .  
 
Substituting these into (9), we have the asymptotic expansion of ( )( )G ε Φ E  up to 2ε -order. Further, 

letting xδΦ = , we have the expansion of ( )G
f ε , the density function of ( )G ε :  

( ) 1 12 1( ) ( 1) ( )
T TA T T AG

f f x { A A x f x }
xε ε ∂

= + −  =  ∂
E

1 1

2
2 2 2 2

3 1 2 12

1( 1) ( ) ( 1) ( ) ( ) ( )
2T TT T A T T A{ A A x f x } { A A x f x } o

x x
ε ε
 ∂ ∂  + −  =  + − = +    ∂ ∂ 

E E  
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1 1

2 1
2 2( ) ( 1) ( ) ( )

T TA T Af x {c H x f x }
x

ε ,∂
= + − ;Σ

∂
  (16) 

1 1

2
2 3 1 2 2 2 2

2
1 3 0 2 4

1( 1) ( ) ( ) ( 1) ( ) ( ) ( )
2T Ti i T A i i T A

i i
{ c H x f x } { c H x f x } o

x x
ε ε, ,

= , = , ,

 ∂ ∂
+ − ;Σ + − ;Σ + . ∂ ∂ 

∑ ∑  

 

 
An Alternative Approach with a System of Ordinary Differential Equations 

In this subsection, we present an alternative approach in which the conditional expectations are computed 
through some system of ordinary differential equations. Again the asymptotic expansion of ( )( )G ε Φ E  

up to 2ε -order is considered.  Note that the expectations of 2TA , 3TA  and 2
2( )TA  conditional on 

1TA  are expressed by linear combinations of a finite number of Hermite polynomials as in (13), (14) and 
(15).  Thus, by Lemma 4 in Takahashi, Takehara and Toda (2009), we have we have  

2
2 1

2 1
0

[ ] ( )T T n n T
n

A A x a H x,

=

| = = ;Σ ,∑E   (17) 

3
3 1

3 1
0

[ ] ( )T T n n T
n

A A x a H x,

=

| = = ;Σ ,∑E   (18) 

4
2 2 2

2 1
0

and [( ) ] ( )T T n n T
n

A A x a H x,

=

| = = ;Σ ,∑E   (19) 

where the coefficients are given by  

{ } { }

{ }

2 1 3 1
2 3

0 0

2
2 2 2

2 1
0

1 1 1 1[ ] [ ]
( ) ( )

1 1 [ ( ) ] and exp
( ) 2

n n
< > < >

n T T n T Tn n n n

n
< > < >

n T T t t tn n

a Z A a Z A
n i n i

a Z A Z i A
n i

ξ ξ

ξ ξ

ξ ξ

ξ

ξ ξ

ξξ
ξ

, ,

= =

 
 ,
 
  
 =

∂ ∂
= , = ,

! Σ ∂ ! Σ ∂

∂
= , := + Σ .

! Σ ∂

E E

E
 

Note that < >Z ξ  is a martingale with 0 1< >Z ξ = . Since these conditional expectations can be represented 
by linear combinations of Hermite polynomials as seen in the previous subsection, the following should 
hold, which can be confirmed easily with results of this subsection: 
  

2 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 2 1
2 2 1 0 3 3 1 1 2 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 4 2 2 0 0 3 1

0 0 (20)
0

a c a a a c a c a a
a c a c a c a a

, , , , , , , , , ,

, , , , , , , ,

 = ; = = ; = ; = ; = = ;


= ; = ; = ; = = .
 (21) 

 
Then, computation of these conditional expectations is equivalent to that of the unconditional expectations 

2[ ]< >
T TZ AξE , 3[ ]< >

T TZ AξE  and 2
2[ ( ) ]< >

T TZ AξE . First, applying It ô ’s formula to 2
< >
t tZ Aξ 

 
 

 we have  

2 2 2 20 0

t t< > < > < > < >
t t s s s s t

Z A Z dA A dZ A Zξ ξ ξ ξ          
= + + ,∫ ∫E E

(0) (0)
10

2( ) ( ) ( )
t < >

s s s si S s S s Z A dsξξ σ σ  
  

= ∂ , ,∫ E  (22) 

 
Then, applying It ô ’s formula to 1

< >
t tZ Aξ 

 
 

 again, we also have  
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1 1 1 10 0

t t< > < > < > < >
t t s s s s t

Z A Z dA A dZ A Zξ ξ ξ ξ          
= + + ,∫ ∫E E

2 (0) 2 (0)

0 0
( ) ( ) ( ) ( )

t t< >
s s si S s Z ds i S s dsξξ σ ξ σ 

  
= , = ,∫ ∫E  (23) 

 
since 1< >

tZ ξ 
  

=E  for all t .  
 
Similarly, the following are obtained:  
 

( 2 (0) (0) 2
3 10

3( ) ( ) ( ) ( )
t< > < >

t t s s s sZ A i S s S s Z A dsξ ξξ σ σ   
      

= ∂ , ,∫E E

)(0) (0)
20

( ) ( )
t < >

s s s sS s S s Z A dsξσ σ  
  

+ ∂ , ,∫ E   (24) 

2 2 (0) 2 (0)
1 10 0

( ) ( ) 2( ) ( )
t t< > < >

t t s s s sZ A S s ds i S s Z A dsξ ξσ ξ σ   
      

= , + ,∫ ∫E E  (25) 

( )22 (0) 2
2 10

( ) 4 ( ) ( )
t< > < >

t t s s sZ A S s Z A dsξ ξσ   
      

= ∂ ,∫E E (0) (0)
2 10

4( ) ( ) ( )
t < >

s s s s si S s S s Z A A dsξξ σ σ  
  

+ ∂ , ,∫ E  

  (26) 
(0) (0)

2 1 10
2 ( ) ( )

t< > < >
t t t s s s sZ A A S s S s Z A dsξ ξσ σ   

      
= ∂ , ,∫E E  (27) 

(0) 2 (0) (0) 2
2 10 0

( ) ( ( )) 2( ) ( ) ( ) ( )
t t< > < >

s s s s s s si S s Z A ds i S s S s Z A dsξ ξξ σ ξ σ σ   
      

+ , + ∂ , , .∫ ∫E E  

 
Then, 2[ ]< >

T TZ AξE , 3[ ]< >
T TZ AξE  and 2

2[ ( ) ]< >
T TZ AξE  can be obtained as solutions of the system of 

ordinary differential equations (22), (23), (24), (25), (26) and (27). In fact, since they have a grading 
structure that the higher-order equations depend only on the lower ones, they can be easily solved by 
substituting each solution into the next ordinary differential equation recursively. Moreover, since these 
solutions are clearly the polynomial of ( )iξ , we can easily implement differentiations with respect to ξ  
in (17), (18) and (19).  It is obvious that the resulting coefficients given by these solutions are equivalent 
to the results in the previous subsection.  
 
In summary, in a Black-Scholes-type economy, we consider the risky asset ( )S ε  and evaluate some 
quantities, expressed as an expectation of the function of the terminal price, such as prices or risk 
sensitivities of the securities on the asset. First we expand them around the limit to 0ε =  so that we 
obtain the expansion (8) which contains some conditional expectations. Then, by approaches described in 
Section 2 and 3, we compute these conditional expectation. Finally, substituting computation results into 
(8), we obtain the asymptotic expansion of those quantities.   
 
NUMERICAL EXAMPLES: APPLICATION TO LONG-TERM CURRENCY OPTIONS 
 
In this section we apply our methods to pricing options on currencies under Libor Market Models(LMMs) 
of interest rates and stochastic volatility of the spot foreign exchange rate (Forex), which is much more 
complex then Black-Scholes-type case in the previous section. Due to limitation of space, only the 
structure of the stochastic differential equations of our model is described here. For details of the 
underlying model, see Takahashi and Takehara (2007). Detailed discussions in a general setting including 
the following examples are found in Section 3 and 4 of Takahashi, Takehara and Toda (2009).  
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Let 

Cross-Currency Libor Market Models 

0
( )t t T

F P {F } ∗≤ ≤ <∞
Ω, , ,  be a complete probability space with a filtration satisfying the usual 

conditions. We consider the following pricing problem for the call option with maturity (0 ]T T ∗∈ ,  and 
strike rate 0K > ;  

(0 ) (0 ) ( ( ) ) (0 ) ( ( ) )C P P
d d TV T K P T S T K P T F T K+ +   

      
; , = , × − = , × −E E  (28) 

where (0 )CV T K; ,  denotes the value of a European call option at time 0  with maturity T  and strike 
rate K , ( )S T  denotes the spot exchange rate at time 0t ≥  and ( )TF t  denotes the time t  value of 
the forex forward rate with maturity T . Similarly, for the put option we consider  
 

(0 ) (0 ) ( ( )) (0 ) ( ( ))P P P
d d TV T K P T K S T P T K F T+ +   

      
; , = , × − = , × − .E E  (29) 

 
It is well known that the arbitrage-free relation between the forex spot rate and the forex forward rate are 
given by ( )

( )( ) ( ) f

d

P t T
T P t TF t S t ,

,=  where ( )dP t T,  and ( )fP t T,  denote the time t  values of domestic and 

foreign zero coupon bonds with maturity T  respectively. [ ]P ⋅E  denotes an expectation operator under 
EMM(Equivalent Martingale Measure) P  whose associated numeraire is the domestic zero coupon bond 
maturing at T .  
 
For these pricing problems, a market model and stochastic volatility model are applied to modeling 
interest rates’ and the spot exchange rate dynamics respectively.  We first define domestic and foreign 

forward interest rates as ( )1

( ) 1
( )( ) 1d j

d j j

P t T
dj P t Tf t τ+

,
,= −  and ( )1

( ) 1
( )( ) 1f j

f j j

P t T
fj P t Tf t τ+

,
,= −  respectively, where 

( ) ( ) 1j n t n t N= , + , , , 1j j jT Tτ += − , and ( )d jP t T,  and ( )f jP t T,  denote the prices of 

domestic/foreign zero coupon bonds with maturity jT  at time t ( jT≤ ) respectively; 

( ) min in t {i t T }= : ≤ . We also define spot interest rates to the nearest fixing date denoted by ( ) 1( )d n tf t, −  

and ( ) 1( )f n tf t, −  as ( )( ) ( )

1 1
( ) 1 ( ) ( )( ) 1

d n t n td n t P t T T tf t, − , −= −  and ( )( ) ( )

1 1
( ) 1 ( ) ( )( ) 1

f n t n tf n t P t T T tf t, − , −= − . Finally, we 

set 1NT T +=  and will abbreviate 
1
( )

NTF t
+

 to 1( )NF t+  from here forward. 
   
Under the framework of asymptotic expansion in the standard cross-currency libor market model, we 
consider the following system of stochastic differential equations(SDEs) under the domestic terminal 
measure P  to price options. For detailed arguments on the framework of these SDEs see Takahashi and 
Takehara (2007).  
 
As for the domestic and foreign interest rates we assume forward market models; for 

( ) 1 ( ) ( ) 1j n t n t n t N= − , , + , , ,  
 

( ) 2 0 ( )  ( ) ( )  

0 0
1

( ) (0) ( ) ( ) ( ) ( ) ( )
N t t

dj dj di dj dj dj dj u
i j

f t f g u u f u du f u u dWε ε ε εε γ ε γ′ ′,

= +

= + + ,∑ ∫ ∫  (30) 
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( ) 2 0 ( )  ( ) 2 0 ( )  ( )

0 0
0 0

( ) (0) ( ) ( ) ( ) ( ) ( ) ( )
j Nt t

fj fj fi fj fj di fj fj
i i

f t f g u u f u du g u u f u duε ε ε ε εε γ ε γ′ ′, ,

= =

= − +∑ ∑∫ ∫
2 ( ) ( ) ( )   

0 0
( ) ( ) ( ) ( ) ( )

t t

fj fj fj fj uu u f u du f u u dWε ε εε σ γ ε γσ ′′− + ,∫ ∫  (31) 

 

where 
( ) ( )

( ) ( )

( ) ( )0 ( ) 0 ( )
1 ( ) 1 ( )

( ) ( ) ( ) ( )j jdj fj

j jdj fj

f t f t
dj dj fj fjf t f t

g t t g t t
ε ε

ε ε

τ τε ε
τ τ

γ γ− −, ,
+ +

:= , := ;   x ′  denotes the transpose of x  and W  is 

a r -dimensional standard Wiener process under the domestic terminal measure P ; ( )dj sγ , ( )fj sγ  are 
r -dimensional vector-valued functions of time-parameter s ; σ  denotes a r -dimensional constant 
vector satisfying 1σ|| ||=  and ( ) ( )tεσ , the volatility of the spot exchange rate, is specified to follow a 

++R -valued general time-inhomogeneous Markovian process as follows:  
 

 

               (32) 
where ( )s xµ ,  and ( )s xω ,  are functions of s  and x .  
 
Finally, we consider the process of the Forex forward 1( )NF t+ . Since 

11( ) ( )
NN TF t F t
++ ≡  can be 

expressed as 1

1

( )
1 ( )( ) ( ) f N

d N

P t T
N P t TF t S t +

+

,
+ ,= ,  we easily notice that it is a martingale under the domestic terminal 

measure.  In particular, it satisfies the following stochastic differential equation  
 

( ) ( )  ( )
1 1 10
( ) (0) ( ) ( )

t

N N F N uF t F u F u dWε ε εε σ ′
+ + += + ∫   (33) 

where ( )( ) 0 ( ) 0 ( ) ( )
0

( ) ( ) ( ) ( )N
F fj djj

t g t g t tε ε ε εσ σ, ,
=

:= − + .∑   

We here specify our model and parameters, and confirm the effectiveness of our method in this 
cross-currency framework. First, the processes of domestic and foreign forward interest rates and of the 
volatility of the spot exchange rate are specified. We suppose 

Numerical Examples 

4r = , that is the dimension of a Brownian 
motion is set to be four; it represents the uncertainty of domestic and foreign interest rates, the spot 
exchange rate, and its volatility. Note that in this framework correlations among all factors are allowed. 
We also suppose (0) 100S = .  
 
Next, we specify a volatility process of the spot exchange rate in (32) with  
 

 
( ) ( ) (34)

( )

s x x

s x x

µ κ θ

ω ω

, = − ,


, = ,
 (35) 

 
where θ  and κ  represent the level and speed of its mean-reversion respectively, and ω  denotes a 
volatility vector on the volatility. In this section the parameters are set as follows; 1ε = , (0) 0 1σ θ= = . , 
and 0 1κ = . ; vω ω∗=  where 0 3ω∗ = .  and v  denotes a four dimensional constant vector given 
below.  
 

( ) ( ) 2 0 ( )  ( )  ( )

0 0 0
1

( ) (0) ( ( )) ( ) ( ( )) ( ( ))
Nt t t

dj u
j

t u u du g u u u du u u dWε ε ε ε εσ σ µ σ ε ω σ ε ω σ′ ′,

=

= + , + , + , ,∑∫ ∫ ∫
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We further suppose that initial term structures of domestic and foreign forward interest rates are flat, and 
their volatilities also have flat structures and are constant over time: that is, for all (0)dj dj f f, = , 

(0)fj ff f= , ( ) 1 ( )
jdj d {t T }dt tγ γ γ∗ <=  and ( ) 1 ( )

jfj f {t T }ft tγ γ γ∗ <= . Here, dγ
∗  and fγ

∗  are constant 

scalars, and dγ  and fγ  denote four dimensional constant vectors. Moreover, given a correlation 

matrix C  among all four factors, the constant vectors dγ , fγ , σ  and v  can be determined to 

satisfy 1d f vσγ γ|| ||=|| ||=|| ||=|| ||=  and V V C′ =  where ( )d fV vσγ γ:= , , , .  

In this subsection, we consider four different cases for df , dγ
∗ , ff  and fγ

∗  as in Table 1. For 
correlations, the parameters are set as follows. The correlation between interest rates and the spot 
exchange rate are allowed while there are no correlations among the others. The correlation between 
domestic interest rates and the spot forex is 0.5(  0 5dσγ ′ = . ) and the correlation between foreign interest 

rates and the spot forex is -0.5(  0 5fσγ ′ = − . ).  It is well known that (both exact and approximate) 
evaluation of the long-term options is a difficult task with such complex structures of correlations.  
 
Table 1: Initial Domestic/Foreign Forward Interest Rates and Their Volatilities 
 

  
df   dγ

∗
  ff   fγ

∗
   

case (i) 0.05 0.12 0.05 0.12 
case (ii) 0.02 0.3 0.05 0.12 
case (iii) 0.05 0.12 0.02 0.3 
case (iv) 0.02 0.3 0.02 0.3 

This table shows the initial term stractures of domestic and foreign forward interest rates and those of their volatilities, which are assumed to be 
flat. The figures in the first and second column are the initial value of the domestic interest rates and their volatility. The figures in the third and 
fourth columun are thoes of foregin interest rates. 
 
Lastly, we make an assumption that ( ) 1( )dn t tγ −  and ( ) 1( )fn t tγ − , volatilities of the domestic and foreign 

interest rates applied to the period from t  to the next fixing date ( )n tT , are equal to be zero for arbitrary 

( )[ ]n tt t T∈ , .  
 
In Figure 1, we compare our estimations of the values of call and put options whose maturities are from 
ten to twenty years by an asymptotic expansion up to the fourth order to the benchmarks estimated by 

610  trials of Monte Carlo simulation. In the simulation, we discretized the underlying processes by a 
Euler-Maruyama scheme with time step 0 05.  applied the Antithetic Variable Method. For the 
moneynesses (defined by 1(0)NK F +/ ) less than one, the prices of put options are shown; otherwise, the 
prices of call options are displayed.  
 
As seen in this figure, in general the estimators seems more accurate as the order of the expansion 
increases.  Especially, for the deep out of the money put options the fourth order approximation performs 
much better and is more stable than the lower order approximation.    
 
CONCLUSIONS 
 
In this paper, we reviewed the general procedures for the explicit computation of the asymptotic 
expansion method.   One procedure is that of conditional expectations based on the approach for iterated 
Ito integrals.  The other is the alternative but equivalent calculation algorithm which computes the 
unconditional expectations directly instead of using conditional expectations.  
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For simplicity and space limitation, we focused on the simple case of Black-Scholes-type economy which 
illustrated our key ideas.  Moreover, we applied the methods to option pricing in the cross currency Libor 
market model with a stochastic volatility of the spot exchange rate to illustrate the usefulness and accuracy 
of our approximation with high order expansions. In this practically important example, satisfactory 
results were confirmed even for options with a twenty-year maturity. 
 
In this paper considers only path-independent European derivatives without considering jumps. Future 
research will develop a similar result in the presence of a jump component. Future research might also 
pursue an efficient method for the evaluation of multi-factor path-dependent or/and American derivatives.  
 
Figure 1: Comparison of the Estimators by the Asymptotic Expansion and Simulations 

 
This figure shows the differences between our estimators of option prices by the asymptotic expansion up to the third(blue lines) and fourth 
order(pink lines) and those by Monte Carlo simulations. The defferences are defined by (the estimate by the asymptotic expansion – that by 
simulation). “Moneyness” is defined by (Strike Rate / Spot Rate). 
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