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ABSTRACT 
 
This paper compares net profits from delta hedging through the Delta of a European call option, by 
assuming underlying stock prices follows a geometric Brownian motion (GBM) or a Variance-Gamma 
(VG) process.  We employ the maximum likelihood estimation method to estimate corresponding 
parameters for each process.  A  Monte Carlo simulation is conducted to simulate spot prices and option 
prices and a likelihood ratio (LR) method is used to estimate the Delta of the call option over different 
sample paths.  We then implement a dynamic delta hedging strategy through the simulated spot prices, 
option prices and Delta at different hedging frequencies.  Finally, we compare net profits calculated from 
hedging corresponding to a GBM or a VG process. 
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INTRODUCTION 
 

elta hedging is a particular type of hedging strategy.  The fundamental of delta hedging is to 
adjust the shares of stocks longed or shorted according to changes of option prices. Delta is 
defined as the rate of changes of option prices to spot prices.  Therefore, Delta plays an important 

role in hedging strategy, since it measures the sensitivity of option prices to spot prices and determines 
how many shares of stocks to purchase or sell to offset risks from changes of option prices.  The gradient 
estimation technique has been widely applied to estimate Delta.  Two widely-used gradient estimation 
methods are (i) the likelihood ratio (LR) method, and (ii) the infinitesimal perturbation analysis (IPA) 
method. 
 
The main purpose of this paper is to compare net profits from delta hedging by assuming underlying stock 
prices follow a geometric Brownian motion (GBM) or Variance-Gamma (VG) process.  Following Jarrow 
and Turnbull (1999), we employ the dynamic hedging strategy to hedge periodically before a European 
call option matures.  Since Delta changes frequently before maturity, we estimate the Delta each time we 
intend to delta hedge, in order to improve the accuracy of stock shares required to offset the risk.   
 
The remainder of this paper is organized as follows.  We first provide a literature review of delta hedging, 
gradient estimation technique, as well as a geometric Brownian motion process and a Variance Gamma 
process.  Then, we introduce the delta hedging strategy, as well as the background of GBM and VG 
processes.  We also provide details of how to estimate Delta for the two processes by the LR method.  
Finally, a numerical experiment of dynamic delta hedging is conducted to compare net profits from GBM 
and VG processes. 
 
LITERATURE REVIEW 
 
Delta hedging has been widely applied by investors who are long or short options to hedge risks from 
changes of option prices.  Due to its broad application in financial engineering, there is a vast literature on 
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delta hedging.  Hull (2003) provides a general introduction of hedging strategies including delta hedging. 
Jarrow and Turnbull (1999) provide a detailed explanation of how to implement dynamic delta hedging 
and replicate portfolios to achieve a delta-neutral position.  
 
The gradient technique is one area in the class of Monte Carlo simulation, which has been broadly applied 
in financial engineering and has been studied and summarized in Glasserman (2004). Fu (2006) reviews 
kinds of methods of gradient estimation and their applications in the finance community.  Fu and Hu 
(1995) first bring the gradient estimation technique IPA method into option pricing and sensitivity 
analysis of options.  Broadie and Glasserman (1996) then employ IPA and LR methods to price European 
and Asian options and analyze sensitivities of these two options. Fu (2008) reviews techniques and 
applications to derivatives securities.  Cao and Guo (2011-1) assume stock prices follow a Variance-
Gamma process, and employ the forward difference, IPA and LR method to estimate Greeks for a 
European call option. Cao and Guo (2011-2) compare the gradient estimates from the Variance Gamma 
model assumption and geometric Brownian motion model assumption.  Cao and Guo (2011-3) analyze 
the statistic properties of net profits from delta hedging via deltas estimated from LR and IPA methods 
under a geometric Brownian motion model.  Cao and Guo (2011-4) compares results of delta hedging 
through deltas calculated from two price distributions (a GBM and a VG) by IPA method.  In this paper 
we employ the LR method to estimate Deltas which play an important role in delta hedging, due to its 
popularity in empirical research. 
 
Before implementing the LR method, we need to make certain assumptions on the underlying processes.  
The popularly used geometric Brownian motion model is also called the Black-Scholes model, which was 
first proposed by Black and Scholes (1973) and Merton (1973) assumes stock prices follow a geometric 
Brownian motion process.  However, empirical evidence suggests that the GBM has some imperfections 
and does not describe the statistical properties of financial time series well.  The Variance Gamma (VG) 
process, as one of the most popular Levy process, was first introduced to the literature in Madan and 
Seneta (1990) then applied to option pricing in Madan and Milne (1991).  Madan, Carr and Chang (1998) 
developed the VG process by adding one more parameter to describe the negative skewness of stock 
prices in the market.  This VG process has shown more accuracy in pricing stocks.  Fu (2007) reviews 
how to apply this model by Monte Carlo simulation to price options and other derivatives.  Cao and Fu 
(2010) estimate the Greeks of a basket of options called Mountain Range options in the assumption that 
each asset is defined by this model.   
 
DELTA HEDGING STRATEGY 
 
Delta is the rate of changes of option prices with respect to price changes of underlying assets.  In other 
words, Delta measures the sensitivity of a derivative 𝑓 say options or the portfolios of options, with 
respect to stock prices 𝑆.  We could define Delta ∆ as : 
 
∆= ∂f

∂S
                                                (1) 

 
Equation (1) implies that when stock prices change by a small amount  ∆𝑆, option prices would change 
correspondingly by an amount of  ∆ × ∆𝑆.  An investor could hedge the risk by adjusting (purchase or sell) 
shares of stocks to make the portfolio's delta be zero, also called the delta-neutral portfolio.  Delta 
hedging is a trading strategy which attempts to maintain a delta-neutral portfolio dynamically by 
offsetting the change of option positions through the change of stock positions.  As Delta changes, an 
investor's risk-neutral position (delta-hedged position) would exist for only a short time.  Thus, we need 
to adjust hedging positions periodically, which is called rebalancing.  If we could rebalance immediately 
when stock prices change, perfect hedge is achieved; however, perfect hedge is always difficult to achieve 
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in the real world.  What we can do is to employ a dynamic hedging strategy and make hedging periods as 
short as possible.  Next, we explain the procedure of delta hedging by setting the portfolio's delta zero. 
 
Suppose an investor writes 𝑁0 number of European call options which will mature after a period of  𝑇� , 
and each option covers 100 shares of stocks.  The investor can buy 100 × 𝑁0 shares of stocks to hedge his 
position, since the gain or loss on his option position can be offset by the loss or gain on his stock position.  
However, as time changes, Delta changes; the risk-neutral position is destroyed.  Thus, he has to adjust 
the portfolio by delta hedging every ∆𝑡  period, i.e., at  𝑡 = 0, 𝑡1 = ∆𝑡,⋯ , 𝑡𝑘−1 = (𝑘 − 1)∆𝑡, where 𝑘 is 
the largest integer satisfying 𝑡𝑘−1 < 𝑇�  and 𝑡𝑘 > 𝑇� .  The purpose of delta hedging is to make the value of 
a portfolio insensitive to small changes of option prices to maintain a delta-neutral portfolio position.  In 
addition, the portfolio is self-financing.  The options an investor writes would cover a total of 𝑁 =
100 ×𝑁0  shares of stocks.  Assume he will long  𝑚0  shares of the stock and borrow 𝐵0 dollars at  𝑡0 
 to offset the risk.  Denote the option price by  𝑓0 , the stock price by 𝑆0 and the Delta ∆0 at  𝑡0. The value 
of the portfolio 𝑃 at  𝑡0 is set to be 0, that is: 
 
 𝑃 = −𝑁 × 𝑓0 +𝑚0 × 𝑆0 + 𝐵0 = 0 .        (2) 
 
Taking the derivative of the value of the portfolio P  with respect to the stock price at  𝑡0, we have:  
 
𝑑𝑃
𝑑𝑆0

= −𝑁 × ∆0 + 𝑚0, 
 
which could be considered as the delta of the portfolio ∆𝑝 , i.e., ∆𝑝= 𝑑𝑃

𝑑𝑆0
.  In order to maintain the 

∆𝑝= 𝑑𝑃
𝑑𝑆0

 portfolio delta-neutral, we have ∆𝑝= 0, i.e.,  
 
∆𝑝= −𝑁 × ∆0 +𝑚0 = 0.         (3) 
 
From Equation (2) and Equation (3), we could calculate shares of stocks to purchase (𝑚0) and the amount 
of dollars to borrow (𝐵0) at 𝑡0.  As is mentioned earlier, we have to rebalance the portfolio periodically.  
At the second hedging period  𝑡1, we have delta ∆1 at 𝑡1 and follow the same procedure above by setting 
both the net value and delta of the portfolio to zero, to get the shares of stocks to purchase (𝑚1) and the 
amount of money to borrow ( 𝐵1) at  𝑡1 . We need to rebalance 𝑘 times from 𝑡 = 0  to 𝑡 = 𝑡𝑘−1 before the 
option matures at  𝑇� . 
 
Following the procedures of rebalancing described above, we have a total of  𝑀𝑠 = ∑ 𝑚𝑖

𝑘
𝑖=0  shares of 

stocks at  𝑇� .  In order to calculate the replication cost at 𝑇�  in each sample path, we need to consider (i) the 
payoff 𝑉1  from selling 𝑀𝑠 shares of stocks considering having written 𝑁0  number of European call 
options, and (ii) the cumulative cost  𝑉2 which is accumulated with interest form borrowing cash during 
the whole hedging procedure.  𝑉1 can be calculated as: 
 
𝑉1 = 𝑀𝑠 × max�𝑆𝑇,𝐾�,                                          (4) 
 
where 𝐾 is the strike price of an option.  It is noteworthy that generally 𝑀𝑠 < 𝑁.  Let 𝐶𝑖 be the cumulative 
cost of cash borrowed till 𝑡𝑖 and  𝐵𝑖 be the amount of cash borrowed at 𝑡𝑖 we have 
 
𝐶0 = 𝐵0, 

𝐶1 = 𝐵1 + 𝐶0 × exp (𝑟 ×
∆𝑡

365
) 

⋯ 
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𝐶𝑘−1 = 𝐵𝑘−1 + 𝐶𝑘−2 × exp (𝑟 ×
∆𝑡

365
) 

 
𝑉2 can be calculated as: 
 
𝑉2 = 𝐶𝑘−1 × exp (𝑟 × 𝑇�−𝑡𝑘−1

365
).         (5) 

 
Therefore, the replication cost  𝑉3  is  
 
𝑉3 = 𝑉2 − 𝑉1. 
 
To calculate the net gain of delta hedging in different sample paths, we need to calculate the payoff  𝑉4 
from selling all the call options the investor writes at 𝑡 = 0.  Thus, 𝑉4 is 
 
𝑉4 = 𝑓0 × 𝑁0 

𝑉2 = 𝑓0 × 𝑁0 × exp�𝑟 ×
𝑇�

365�
. 

 
The net gain of delta hedging periodically in one sample path is  
 
𝑉𝑛𝑒𝑡 = 𝑉4 − 𝑉3. 
 
We shall explain how to delta hedge in one sample path in Figure 1. 
 
Figure 1:  A Sample Path of Delta Hedging 

 
Notes: This figure shows one sample path of estimating deltas and when to delta hedge. 
 
ALGORITHMS OF DYNAMIC DELTA HEDGING 
 
Algorithm 1 for Spot Prices: 
 
First, we need to simulate all spot prices 𝑆̂𝑖 at different periods 𝑡𝑖 .  The algorithm to simulate spot prices 
in one sample path is as follows: 
 
At  𝑡0 = 0, the spot price is 𝑆̂0 = 𝑆̃0. 

 
At  𝑡1 = ∆𝑡 , the spot price  𝑆̂1 can be calculated through (10) or (15) by setting𝑡 = ∆𝑡,  𝑆0 = 𝑆̂0 and 
 𝑆𝑡 = 𝑆̂1. 

 
…… 

 
At 𝑡𝑘−1 = (𝑘 − 1)∆𝑡  , the spot price 𝑆̂𝑘−1  can be calculated through (10) or (15) by setting 𝑡 = ∆𝑡 , 
 𝑆0 = 𝑆̂𝑘−2 and 𝑆𝑡 = 𝑆̂𝑘−1. 

 

𝒔�𝟎                      𝒔�𝟏                𝒔�𝟐                𝒔�𝟑             𝒔�𝒌−𝟏     𝒔�𝒌              
𝒕 = 𝟎                𝒕𝟏 =  ∆𝒕          𝒕𝟐 =  𝟐∆𝒕          𝒕𝟑 =  𝟑∆𝒕       𝒕𝒌 − 𝟏          𝑻�     
∆𝟎                      ∆𝟏                     ∆𝟐                        ∆𝟑                    ∆𝒌−𝟏    
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At 𝑡𝑘 = 𝑇� , the spot price 𝑆̂𝑘  can be calculated through (10) or (15) by setting 𝑡 = 𝑇� − (𝑘 − 1)∆𝑡 , 
 𝑆0 = 𝑆̂𝑘−1 and   𝑆𝑡 = 𝑆̂𝑘. 
 
Next we show Algorithm 2 for the calculation of Delta.  We need to simulate the Delta at hedging periods 
𝑡1.  The algorithm to estimate the Delta in one sample path is as follows: 
 
At 𝑡0 = 0 the estimators for Delta can be calculated through (12) or (17) by setting 𝑆0 = 𝑆̂0, and 𝑇 = 𝑇� −
𝑡0 = 𝑇� . 
 
At 𝑡1 = ∆𝑡 , the estimators for Delta can be calculated through (12) or (17) by setting  𝑆0 = 𝑆̂1 , and 
𝑇 = 𝑇� − 𝑡1 = 𝑇� − ∆𝑡. 
…… 

 
At  𝑡𝑘−1 = (𝑘 − 1)∆𝑡 the estimators for Delta can be calculated through (12) or (17) by setting 𝑆0 = 𝑆̂𝑘−1, 
and 𝑇 = 𝑇� − 𝑡𝑘−1 = 𝑇� − (𝑘 − 1)∆𝑡. 

 
At 𝑡𝑘 = 𝑇�  , we cannot hedge on the maturity day and thus do not need to estimate the Delta. 
 
To employ the hedging strategy shown above, we need to estimate the Delta first.  In this paper, we 
estimate the Delta from a GBM or a VG by LR, respectively.  In the following sections, we provide an 
introduction of the LR method in the gradient estimation technique as well as the GBM and the VG 
processes.  In addition, estimators of the Delta by LR are also provided. 
 
GRADIENT ESTIMATION TECHNIQUE: LIKELIHOOD RATIO METHOD 
 
Simulation and gradient estimation are very useful in financial engineering applications.  To employ delta 
hedging, we first estimate the Delta.  Delta can be calculated by taking the derivative of the option prices 
with respect to spot prices.  Let's set up the problem first.  Assuming the objective function 𝑉(𝜉) depends 
on the parameter 𝜉, we focus on calculating: 
 
𝑑 𝑉(𝜉)
𝑑𝜉

. 
 
Suppose the objective function is an expectation of the sample performance measure, that is: 
 
𝑉(𝜉) = 𝐸[𝐿(𝜉)] = 𝐸[𝐿�𝑋1,𝑋2,⋯ ,𝑋𝑛; 𝜉�]         (6) 
 
where 𝑋 = 𝑋1,𝑋2,⋯ ,𝑋𝑛 are dependent on 𝜉,  and 𝑛 is a fixed number of random variables.  Using the law 
of unconscious statistician, the expectation can be written as: 
 
𝐸[𝐿(𝑋)] = ∫ 𝑦𝑑𝐹𝐿 (𝑦),                   (7) 
 
where 𝐹𝐿 is the distribution of 𝐿; and 
 
𝐸[𝐿(𝑋)] = ∫ 𝐿(𝑥)𝑑𝐹𝑥 (𝑥),          (8) 
 
where 𝐹𝑥  is the distribution of an input random variable 𝑋.  According to different ways of writing 𝑉(𝜉)  
above, we have several methods to estimate the gradient of 𝑉(𝜉), i.e., finite difference, IPA and LR, of 
which the last two belong to indirect methods. 
To make sense of the right hand side of Equation (11), we write the expectation of  𝐿(𝑋) as: 
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𝐸[𝐿(𝑋)] = ∫ 𝐿(𝑥)𝑓𝑋 (𝑥, 𝜉)𝑑𝑥,          (9) 
 
where 𝑓𝑋 is the probability density function of 𝑋.  The dependence of parameter 𝜉 can be path-wise from 
the input random variable 𝑋 as shown in Equation (8), and LR method originally comes from taking the 
derivative of Equation (9).  Assume the probability density function 𝑓𝑋 of 𝑋 is differentiable.  The LR 
estimate is: 
 
𝑑𝐸[𝐿(𝑋)]

𝑑𝜉
= ∫ 𝐿(𝑥) 𝑑𝑓𝑋(𝑥,𝜉)

𝑑𝜉
+∞
−∞ 𝑑𝑥 = ∫ 𝐿(𝑥) 𝑑𝑙𝑛𝑓𝑋(𝑥,𝜉)

𝑑𝜉
𝑓𝑋(𝑥)+∞

−∞ 𝑑𝑥, 
 
and the estimator is 
 
𝐿(𝑥) 𝑑𝑙𝑛𝑓𝑋(𝑥,𝜉)

𝑑𝜉
, 

 
where 𝑑𝑙𝑛𝑓𝑋(𝑥,𝜉)

𝑑𝜉  is the score function. 
 
A European call option gives the buyer the right, not the obligation to buy a certain amount of financial 
instrument from the seller at maturity for a certain strike price.  Let  𝑆𝑡  be a stock price,  𝑇  be the 
maturity time, 𝐾 be the strike price, and 𝑟  be the risk-free interest rate.  The price (value) of the European 
call option at 𝑡 is 
 
𝑉𝑇 = 𝑒−𝑟𝑇(𝑆𝑇 − 𝐾)+, 

 
where  𝑆𝑇 can follow a GBM process or a VG (GVG or DVG) process. 
 
ESTIMATING UNDER GEOMETRIC BROWNIAN MOTION PROCESS 
 
A stochastic process price 𝑆𝑡 follows a geometric Brownian motion if price  log (𝑆𝑡) is a Brownian motion 
with initial value price log (𝑆0).   In the Black-Scholes model, the price of an underlying stock 𝑆𝑡 
following a geometric Brownian motion process satisfies 
 
𝑑𝑆𝑡
𝑆𝑡

= 𝜇𝑑𝑡 + 𝜎�𝑑𝑊t, 
 
where 𝑊t is a standard Brownian motion.  With dividend yield 𝑞, spot 𝑆0, volatility 𝜎� and drift 𝜇 = 𝑟 − 𝑞, 
we can obtain the stock price: 
 
𝑆𝑡 = 𝑆0 exp�(𝑟 − 𝑞 − 𝜎�2)𝑡 + 𝜎�𝑊t �. 
 
The stock price 𝑆𝑡 can be simulated through 
 
𝑆𝑡 = 𝑆0 exp �(𝑟 − 𝑞 − 𝜎�2)𝑡 + 𝜎�√𝑡 𝑍� �          (10) 
 
where 𝑍� represents a standard normal random variable.  The density of stock price  𝑆𝑡 is  
 

𝑓(𝑥) = 1
𝑥𝜎�√2𝜋𝑡

𝑒𝑥𝑝 �− 1
2
� 1
𝜎�√𝑡

�𝑙𝑛 𝑥
𝑆0
− �𝑟 − 𝜎� − 𝜎�2

2
� 𝑡��

2
�        (11) 

 
Applying the density function in Equation (11), we have 
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𝑑𝐸[ 𝑉𝑇]
𝑑 𝑆0

= ∫ 𝑒−𝑟𝑇 (𝑥 − 𝐾)+∞
0 × 𝑑f(𝑥)

𝑑 𝑆0
𝑑𝑥 =∫ 𝑒−𝑟𝑇 (𝑥 − 𝐾)+∞

0 × 𝑑(𝑙𝑛f(𝑥))
𝑑 𝑆0

f(𝑥)𝑑𝑥     
 
Therefore, the estimator of Delta for a European call option through LR is  
 
𝑒−𝑟𝑇 (𝑥 − 𝐾)+ × 𝑑(𝑙𝑛f(𝑥))

𝑑 𝑆0
.           (12) 

 
ESTIMATING UNDER VARIANCE GAMMA PROCESS 
 
The Variance Gamma Process is a Levy process of independent and stationary increments.  The 
characteristic function of 𝑉𝐺(𝜎, 𝜈,𝜃, 𝑡) is given by 
 
𝛷𝑉𝐺(𝜇,𝜎, 𝜈,𝜃, 𝑡) = (1 − 𝑖𝑢𝜃𝜈 + 1

2
𝜎2𝜈𝑢2)−𝑡/𝜈. 

 
There are two ways to define the VG process. The VG process can be defined as a Gamma-time-changed 
Brownian motion subordinated by a gamma process.  Let 𝑊t be a standard Brownian motion, 𝐵t(𝜇,σ) =
𝜇𝑡 + 𝜎𝑊t  be a Brownian motion with a constant drift rate 𝜇 and volatility 𝜎, 𝛾𝑡(ν) be a gamma process 
with drift  𝜇 = 1 and variance parameter 𝜈.  The representation of VG process (say GVG) is: 
 
𝑋𝑡 = 𝐵𝛾𝑡(ν)

(θ,σ) = 𝜃𝛾𝑡(ν) + 𝜎𝑊𝛾𝑡(ν)        (13) 
 
Second, the VG process is the difference of two gamma processes.  Let 𝛾𝑡

(𝜇,ν) be the gamma process with 
drift parameter 𝜇 and variance parameter  𝜈, the representation of the VG process as the difference of 
gamma process is: 
 
𝑋𝑡 = 𝛾𝑡(𝜇+,𝜈+) − 𝛾𝑡(𝜇−,𝜈−),           (14) 
 

where 𝜇± = (�𝜃2 + 2 𝜎2

𝜈
± 𝜃)/2, and 𝜈± = (𝜇±)2𝜈.  

 
Under the risk-neutral measure, with no dividends and a constant risk-free interest rate r, a stock price is 
given by 
 
𝑆𝑡 = 𝑆0 exp�(𝑟 + 𝜔)𝑡 + 𝑋𝑡�,           (15) 
 
Where 𝜔 = ln �1 − 𝜃𝜈 − 𝜎2𝜈

2
� /𝜈 is the parameter that makes the discounted asset price a martingale.  

 
Madan, Carr and Chang (1998) propose that the density function of the log-price 𝑍 = ln ( 𝑆𝑡/ 𝑆0) is 
 

ℎ(𝑧) =
2exp�𝜃𝑥𝜎2�

𝜈
𝑡
𝜈√2𝜋𝜎Г�𝑡𝜈�

� 𝑥2
2𝜎2
𝜈 +𝜃2

�

𝑡
2𝜈−

1
4
𝐾� � 1

𝜎2
�𝑥2(2𝜎

2

𝜈
+ 𝜃2)�,          (16) 

 
where 𝐾 � is the modified Bessel function of the 2nd kind, and is  𝑥 = 𝑧 − 𝑟𝑡 − 𝑡

𝜈
ln �1 − 𝜃𝜈 − 𝜎2𝜈

2
�.  

Since ℎ(𝑧) doesn't contain 𝑆0, we have to use the Jacobian transform to get the density function 
of 𝑆𝑇 to calculate the derivative with respect to 𝑆0:  



L. Cao & ZF. Guo   IJBFR ♦ Vol. 6 ♦ No. 1 ♦ 2012 
 

32 
 

𝑓𝑆𝑇(𝑠) × �𝜕𝑆𝑇
𝜕𝑍
� = ℎ(𝑧). 

 
Therefore, we can get the density function of 𝑆𝑇: 
 
𝑓𝑆𝑇(𝑠) = ℎ(𝑙𝑛𝑠 − 𝑙𝑛 𝑆0) × 1

𝑠
. 

 
To calculate the Delta, we use 𝑓𝑆𝑇(𝑠) to apply the LR.  Since 
 
𝑑𝐸[ 𝑉𝑇]
𝑑 𝑆0

= ∫ 𝑒−𝑟𝑇 (𝑠 − 𝐾)+∞
0 ×

𝑑(𝑙𝑛𝑓𝑆𝑇(𝑠))
𝑑 𝑆0

𝑓𝑆𝑇(𝑠)𝑑𝑠. 
 
the estimator of the Delta from LR under VG is: 
 
𝑒−𝑟𝑇 (𝑠 − 𝐾)+ ×

𝑑(𝑙𝑛𝑓𝑆𝑇(𝑠))
𝑑 𝑆0

.         (17) 
 
When the stock price follows a GVG or a DVG process, the estimator in (17) would be the estimators for 
GVG or DVG accordingly.  
 
NUMERICAL EXPERIMENT 
 
In this paper, we analyze historical data in WRDS of the stock prices of Google Ltd. from March 10th, 
2008 to September 10th, 2008.  Assuming a stock price follows a geometric Brownian motion or a 
Variance Gamma process, we apply the MLE method to estimate the corresponding parameters.  
Assuming the maturity time for the option is 30 days, i.e., 𝑇� = 30/365, the risk free interest rate minus the 
dividend rate is  𝑟 − 𝑞 = 0.0245174, we get the variance parameter 𝜎� = 0.28983965441613 for the GBM 
process; and 𝜎 = 0.21370332702956 ,𝜈 = 0.01879357471038 , and 𝜃 = −0.19286112983688  for the VG 
process. The spot price is 𝑆̃0 = 433.75 at 𝑡 = 𝑡0 and the strike price is 𝐾 = 440.  
 
We apply a Monte Carlo simulation to follow the algorithm for spot prices and algorithm for the Delta 
described above to simulate for 10000 sample paths.  Moreover, after having the corresponding spot 
prices and the Delta on each sample path, we employ delta hedging technique to calculate the net gains on 
each sample path.   The summary statistics for the net profits from delta hedging only once initially, i.e., 
∆𝑡 = 𝑇� = 30/365 by the methods above is shown in Table (1). 
 
CONCLUSION 
 
Assuming stock prices follow two price distributions, a geometric Brownian motion process and a 
Variance Gamma process, we employ the dynamic delta hedging strategy to identify net profits and 
analyze the statistical properties under these two assumptions.  Deltas play an important role in the 
hedging strategy.  For different hedging times, we download the historical data of the stock prices of 
Google Ltd. and calculate the corresponding deltas through one of the gradient estimation techniques 
called likelihood ratio method.  A comparison is made on the numerical results obtained above.   
 
Our main findings can be summarized as follows:  1) The mean values of net gain from higher hedging 
frequency are always bigger than the ones from lower hedging frequency. But in our experiment, the 
mean values of hedging just once initially are higher than ones from higher frequency. This exception 
happens is because the standard error is very large, and the results are probably biased. 2) The standard 
errors of the net profit from higher frequency are always lower than the ones from the net profit from 
lower frequency. 3) The mean value of net gain following the Variance Gamma process is bigger than the 
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mean following the geometric Brownian motion process. 4) The mean value of net gain from GVG and 
DVG are close. Further work is needed to reduce the big standard errors of net profits from hedging at 
low frequency, making the all results unbiased. 
 
Table 1:  Summary Statistics of Net Profit by Delta Hedging 
 

Hedge once initially GBM LR GVG LR DVG LR 
Mean 4484.4 4492.4 4439.3 
StdErr 100.26 99.85 101.47 
Hedge every 14 days    
Mean 3895 3981 3904 
StdErr 65.14 60.33 59.73 
Hedge every 7 days    
Mean 4059 4051 4077 
StdErr 53.52 50.73 69.04 
Hedge every 3 days    
Mean 4583 4607 4554 
StdErr 26.41 20.98 20.58 

  Notes: This table shows the summary statistics of net profit by delta hedging at different hedging frequencies. Mean denotes the mean value of 
net profit, while StdErr is the standard error of net profit.  GBM LR is the results from delta hedging with respect to a GBM process by LR 
method.  GVG LR is the results from delta hedging with respect to a GVG process by LR method.  DVG LR is the results from delta hedging with 
respect to the GBM process by LR method.  Panel A shows the results of summary statistics of net profits by delta hedging once initially, i.e. 
∆𝑡 = 𝑇� = 30

365
.  Panel B shows the results of summary statistics of net profits by delta hedging every 14 days , i.e., ∆𝑡 = 𝑇� = 14/365.  Panel C 

shows the results of summary statistics of net profits by delta hedging every 7 days, i.e. ,∆𝑡 = 𝑇� = 7/365.  Panel D shows the results of 
summary statistics of net profits by delta hedging every 3 days, i.e., ∆𝑡 = 𝑇� = 3/365.  
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