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ABSTRACT 

 
This paper derives a pricing model for payment deferred vulnerable options and applies the results to the 
pricing of vulnerable range accrual notes. The valuation model for vulnerable options takes into account 
the possibility of the option writer defaulting. However, when the payment date is set later than the option 
maturity date, the valuation model will be incomplete if the default risk between the option maturity and 
payment dates is not explicitly incorporated. We extend the current available models and our results show 
that the default risk of the option writer will further reduce the option value if the payment date is after 
the maturity date. The analysis of vulnerable range accrual note, which contains multiple payment 
deferred vulnerable options, is also performed. Due to the product design, the pricing model for 
vulnerable range accrual notes shows that the relationship between volatility and note value is not 
monotonic but depends on whether the underlying price is within, outside, or on the range boundary. 
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INTRODUCTION 
 

his paper derives a pricing model for payment deferred vulnerable options and applies the results 
to the pricing of vulnerable range accrual notes. The valuation model for vulnerable options takes 
into account the fact that the option writer may default. However, when the payment date is set 

later than the option maturity date, a common arrangement in the OTC structured products market, the 
valuation model will be incomplete if the default risk between the option maturity and payment dates is 
not explicitly incorporated. We extend the current available models, which usually assume that the option 
maturity and payment dates are identical. Our results show that the default risk of the option writer will 
further reduce the option value if the payment date is after the maturity date.  

 
One practical application of the payment deferred vulnerable option valuation model is in the valuation of 
vulnerable range accrual notes. Range accrual notes are structured products. Its payoff is defined as the 
interest payment computed as the proportion of the number of days that the reference underlying asset 
price lies within a specified range times the interest rate specified at the initiation of the note. The 
specified interest rate is usually set much higher than the interest rate currently available on the market. 
Therefore, it gives the note holders a chance to get higher earnings. For this reason, the range accrual note 
is attractive to investors, especially in a low interest rate environment. The analysis of vulnerable range 
accrual note, which contains multiple payment deferred vulnerable options, is also performed.  

 
The paper is organized as follows. Section 2 provides a pricing model for payment deferred options. Since 
range accrual notes can be regarded as combinations of range options, which are combinations of digital 
options, Section 3 discusses the valuation of digital options and range options. Section 4 then applies the 
results in Sections 2 and 3 to the pricing of vulnerable range accrual notes. Finally, Section 5 presents our 
conclusions. 

T 
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LITERATURE REVIEW 
 
Black and Sholes (1973) value options by constructing a no-arbitrage portfolio and employ the partial 
differential equation (PDE) technique to derive the closed-form solution for European options. The 
martingale pricing method (Harrison and Kreps, 1979; Harrison and Pliska, 1981) is efficient in reducing 
the complexity of pricing processes, and it is now widely used in option valuation. Cox, Ross, and 
Rubinstein (1979) propose the binomial option pricing model that can handle various types of options, 
especially American options. For more complex options such as path-dependent options, it is more 
suitable to apply the Monte Carlo simulation method (Boyle, 1977). 
 
To address the credit risk that the option writer may default, valuation models based on the structural 
approach (Merton, 1974) have been proposed by various researchers. Notably, Johnson and Stulz (1987), 
Klein (1996), and Klein and Inglis (1999, 2001) derive pricing models for plain vanilla vulnerable options, 
assuming that the possible default time may occur on the option maturity date. Liao and Huang (2005) 
extend the model to assume that the possible default time may be anytime before the option maturity date.  

 
The structural approach for pricing European vulnerable options usually assumes that the evolution of the 
total asset value of the option writer follows a stochastic process in addition to the process followed by 
the underlying asset price of the option. As well-documented as it is in literature, it is difficult to estimate 
the volatility parameter for the process followed by the total asset value of the option writer. Empirically, 
when the two processes are not required simultaneously, the volatility parameter estimated for the stock 
price is used as a proxy for the total asset value (Gray et al., 2007). However, the legitimacy of this 
practice has always been questioned. The reduced form approach may circumvent this problem in the 
pricing of vulnerable options, as proposed by Jarrow and Turnbull (1995) and Hull and White (1995), 
among others. Therefore, in this paper, we employ the reduced form model to describe the default process 
of the option issuer and extend the research of vulnerable option pricing to payment deferred vulnerable 
option. 

 
Turnbull (1995) assumes the term structure is exogenous and derives the closed-form solution of an interest 
rate range note. Navatte and Quittard-Pinon (1999) price range notes through a derivation of the embedded 
European range digital option value. They assume that the interest rate dynamics follows a one-factor 
linear Gaussian model and employ the change of numeraire approach to derive analytical solutions. 
Nunes (2004) extends the Navatte and Quittard-Pinon model to a multifactor HJM term structure. 
Eberlein and Kluge (2006) generalize the afore-mentioned results to the multivariate levy term-structure. 
Our paper differs from the above in that the option is assumed to be vulnerable. 
 
PRICING OF PAYMENT DEFERRED OPTIONS 

 
A payment deferred option can be described with Figure 1. In Figure 1, mT  is the option maturity date, 
on which the payoff is decided; pT  is the payment date; 0S  is the underlying price at the initiation of 

the option; and 
mTS  is the underlying price on the option maturity date. The difference between a 

payment deferred option and a plain vanilla option is that the payment date of a plain vanilla is set 
identical to the option maturity date, and the payment date of a payment deferred option is set later than 
the option maturity date. This situation is usually seen in some structured notes, such as range accrual 
notes. 
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Figure 1: The Vulnerable Payment Deferred Option 
 

 
This figure illustrates that the possible default time of the option writer is in the time period between the initiation 0T  and the payment date 

pT  of the option. Once the option writer default, the option holder will not receive the exercise value when the option is in the money at the 
maturity date. 
 
Assuming that the underlying asset price follows a geometric Brownian motion, its dynamic under risk 
neutral probability measure Q  is governed by the following process: 
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By integrating both sides of Equation (2), the dynamic process of the asset price can be described as: 
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Assuming that the default time of the option writer Dτ  follows an exponential distribution: 

 
)(1)(Pr tT

tpD
Q peFT −−−=≤ λt  (4) 

 
where )(Pr ‧Q  is the probability function in risk neutral probability measure, tF  is the information set 
at time t , λ  is the default intensity of the option writer, and λ  is a constant. 
 
Following Jarrow and Turnbull (1995) and Hull and White (1995), we assume that the process for the 
asset underlying the option is independent of the credit risk of the option writer. This assumption amounts 
to considering that the option writer is a large, well-diversified financial institution, a realistic assumption 
as observed in emerging markets. Suppose that the loss rate of the issuer default is β , 10 ≤≤ β , and 
that the issuer default process is independent of the dynamic process of the underlying price. The value of 
a payment deferred vulnerable call option )(tC  can then be derived as follows: 

Possible default time

mT pT

mTS0S
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where [ ]‧QE  is the expectation under risk neutral probability measure Q , 
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Similarly, the value of a payment deferred vulnerable put option )(tP  is 
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Equations (5) and (6) show that the default risk of the option writer will further reduce the option value if 
the payment date is later than that of the maturity. When mp TT = , the payment deferred vulnerable 
options is reduced to a plain vanilla vulnerable option. In Equation (5), we can see that the value of a 
payment deferred vulnerable option is the option value without the issuer default risk multiplied by one 
minus a credit risk discount ( )pTe λβ −−1 , which equals the loss rate β  multiplied by the issuer default 

probability pTe λ−−1  before the payment date. The difference in call option values between without 
issuer default risk C  and with issuer default risk DC  is illustrated in Figure 2. Furthermore, as shown 
in Figure 3, the credit risk discount for the issuer default risk is monotonically positively correlated to the 
loss rate β  and the issuer default intensity λ . 

 
Figure 2: The Call Option Values Without Issuer Default Risk C  and With Issuer Default Risk DC  
( 100=K , 1=T , %30=σ , %5=r , 1=β , %20=λ ) 

 
This figure shows that the option value without issuer default risk is higher than those with issuer default risk and the difference is 

( )pTe λβ −−1 , where β  is the loss rate, λ  is the issuer default intensity, and pT  is payment date. 
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Figure 3: Credit Risk Discount for Issuer Default Risk 
 

 
This figure shows that the credit risk discount due to the possibility of issuer default is positively correlated to the default intensity of the issuer and the 
loss rate. 
 
PRICING OF VULNERABLE DIGITAL OPTIONS AND RANGE OPTIONS 

 
Since range accrual notes can be regarded as combinations of range options, which, in turn, are 
combinations of digital options, we discuss the valuation of digital options and range options in this 
section. The final payoff of a digital option is decided by the condition that the underlying asset price 
satisfies certain specifications. The payoff of a digital call (DC) option can be written as follows: 
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where H  is the fixed amount received by the option holder if the digital call option is in the money on 
the maturity date. Following the settings of the underlying asset price dynamic, the issuer default process, 
the option maturity date, and the option payment date in the previous section, the value of a vulnerable 
digital call option will be: 
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Similarly, the payoff of a digital put (DP) option can be written as follows: 
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Therefore, the value of a vulnerable digital put (DP) option is: 

0
0.5
10%

5%
10%
15%
20%
25%
30%
35%
40%
45%
50%

0% 5% 10% 15% 20% 25% 30%
Loss Rate (β) 

Issuer's Default Intensity (λ)  

Credit Risk Discount 

45%-50%
40%-45%
35%-40%
30%-35%
25%-30%
20%-25%
15%-20%
10%-15%
5%-10%



PC. Wu et al   IJBFR ♦ Vol. 6 ♦ No. 2 ♦ 2012 

 

96 
 

 
( )[ ] )(11)( 2

)()( dNeHetDP tTtTr pp −−−⋅= −−−− λβ  (10) 
 

One type of digital option is the range option, which has a payoff if the underlying asset price lies in the 
specified range on the maturity date. The payoff of a range option can be written as follows: 
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where D  and U  are the lower and upper boundaries of the target range, respectively. 

 
If an investor longs a digital call option with the exercise price D  and shorts a digital call option with 
the exercise price U , the payoff is the same as buying a range option with the lower boundary D  and 
the upper boundary U . Thus the value of a vulnerable range option will be: 
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PRICING OF VULNERABLE RANGE ACCRUAL NOTES 
 
The final payoff of a range accrual note can be divided into the principal and interest payments. The 
principal payment is similar to the cash flow of a zero coupon bond and is decided by the principal 
guarantee ratio, such as 100%, 95%, etc. The interest payment of a range accrual note is defined as the 
proportion of the number of days that the reference underlying asset price lies within a specified range 
times an interest rate specified at the start of the contract. 

 
Assume that the nominal of the note is F ; the principal guarantee ratio is α ; the target range is [ ]UD, , 
D  and U  are the lower and upper boundaries of the target range respectively; the note maturity and 
interest payment date is pT ; the specified interest rate is R ; the observation frequency is n ; and the 
observation dates are )1(T , )2(T , …, )(nT . The payment ratio is φ , usually sets at around 1 over 
260. Some security firms may set this ratio at 1 over 255, and others according to the proportion of 
trading days in one year. As shown in Figure 4, the interest payment on date pT  can be written as: 
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The indicator function I  can be viewed as a range option, the payoff of which is one dollar if the option 
is in the money and zero if it is out of the money. According to the above setting, the interest payment of a 
range accrual note can be expressed as the sum of the final payoffs of a series of range options. Therefore, 



The International Journal of Business and Finance Research ♦ Volume 6 ♦ Number 2 ♦ 2012 
 

97 
 

the value of the range accrual note at time t  can be expressed as the sum of the discounted principal 
payment and a series of range options. We can derive the generalized pricing formula of the vulnerable 
range accrual note (denoted as Note ) as follows: 
 
Figure 4: The Observation Date and Payment Date of the Range Accrual Note 

 
This figure illustrates that the observation dates for determination of the coupon payment and the payment date of the coupon. The possible 
default time of the issuer is in the time period between the initiation of the note and the payment date. Once the issuer default, the note holder will 
not receive the coupon payment. 
 

)(tNote   =  the discounted vulnerable principal payment +  
the value of a series of vulnerable range options 
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The vulnerable option pricing model shows that the default risk of the option writer reduces the option 
value. This feature also shows up in the valuation of the vulnerable range accrual note. Take a range 
accrual note as an example to illustrate the price behavior of the embedded option. The underlying asset 
of this range accrual note is an equity security. The other parameters of this range accrual note are as 
follows: the note maturity and interest payment date pT  is three months after the issue date; the principal 

guarantee ratio α  is 100%; the underlying asset price on the issue date 0S  is 137; the target range is 
[ 0%90 S× , 0%110 S× ], which means the lower boundary D  is 0%90 S×  and the upper boundary 
U  is 0%110 S× ; the payment ratio φ  is 1/260; the specified interest rate R  is 5.3%; the risk free 

 

  Poss

 

T 0 T (1) 

T (2) T (n) 



PC. Wu et al   IJBFR ♦ Vol. 6 ♦ No. 2 ♦ 2012 

 

98 
 

interest rate is set as the three months Commercial Paper (CP) rate on the issue date, which is 0.943%; the 
volatility of the underlying asset price return σ  is 53.38%; and the dividend yield of the underlying 
asset q  is 0. Figure 5 shows the embedded option values of the range accrual note without issuer default 
risk V  and with issuer default risk DV  for different underlying asset prices. 
 
Figure 5: The Embedded Option Values of the Range Accrual Note Without Issuer Default Risk V  and 
With Issuer Default Risk DV  

 
This figure shows that the option values with issuer default risk DV  is higher than those without issuer default risk V  (The issuer loss rate 

1=β ; the issuer default intensity %20=λ ). 

 
Further, due to the product design, the pricing model for vulnerable range accrual notes demonstrates that 
the relationship between the underlying asset volatility and the embedded option value is not monotonic 
but depends on whether the underlying price is within, outside, or on the range boundary. This is shown in 
Figure 6. Generally speaking, when the underlying asset price is within the target range, the embedded 
option value increases with decreasing volatility. On the other hand, when the underlying asset price is 
outside the target range, the embedded option value increases with increasing volatility. 

 
Figure 6: The Embedded Option Values for Different Underlying Asset Volatilities 

 
This figure shows that when the underlying asset price is within the target range, i.e. tS =137, the embedded option value increases with 

decreasing volatility. On the other hand, when the underlying asset price is outside the target range, i.e. tS = 90 and 184, the embedded option 
value increases with increasing volatility. 

 
The reason for the above findings is that when the underlying asset price is within the target range, the 
lower the volatility is, the lower the probability that the underlying asset price breaches the target range 
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will be, which leads to a higher embedded option value. Conversely, when the underlying asset price is 
outside the target range, the higher the volatility is, the higher the probability that the underlying asset 
price moves back into the target range will be, which leads to a higher embedded option value. 

 
CONCLUSIONS 
 
In pricing options, it is common to assume that the payment date is identical to the maturity date. The 
main concern of this paper is the credit risk of the option writer. Therefore, the credit risk involved 
between option maturity and payment dates should be incorporated in the pricing of payment deferred 
vulnerable options. We assume that the underlying asset price follows a geometric Brownian motion, and 
employ the reduced form model to describe the default process of the option issuer. The research results 
show that the default risk of the option writer will further reduce the option value if the payment date is 
after the maturity date. Additionally, an interesting finding about the range accrual note is that the note 
value will not change monotonically with the volatility but will depend on whether the underlying price is 
within, outside, or on the range boundary. This is a special feature that the note writer has to focus on 
when hedging is conducted. In this work, we assume an independent relationship between the underlying 
asset price and the option writer’s default. This assumption is reasonable for a large and well-diversified 
option writer. In order to handle more general cases, we recommend that future studies should consider 
the correlation between the underlying asset price and the option writer’s default. 
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