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ABSTRACT 
 

In this paper we study risk management based on the quantile regression. Unlike the traditional VaR 
estimation methods, the quantile regression approach allows for a general treatment on the error 
distribution and is robust to distributions with heavy tails. We estimate the VaRs of five international 
equity indexes based on AR-ARCH model via quantile regressions. The empirical application show that 
the quantile regression based method is well suited to handle negative skewness and heavy tails in stock 
return time series.  
 
JEL: G110; G150; C18 
 
KEYWORDS: Value at risk, international equities, quantile regression, risk analysis 
 
INTRODUCTION 
 

he Value-at-Risk (VaR) is the loss in market value over a given time horizon that is exceeded with 
probability p, where p is often set at 0.01 or 0.05. In recent years, VaR has become a popular tool 
in the measurement and management of financial risk. This popularity is spurred both by the need 

of various institutions for managing risk and by government regulations [see Dowd (1998), Saunders 
(1999), Blankley, Lamb and Schroeder (2000) for more detailed description of the SEC disclosure 
requirements]. 
 
Traditional methods of VaR estimation are either based on distributional assumptions such as normality, 
or nonparametric smoothing that suffers from curse of dimensionality. In this paper, we estimate VaR via 
quantile regression ARCH models. This model has the advantage of computational convenience, as well 
as the robustness properties of the quantile regression method. The estimation procedure can be easily 
implemented on a regular personal computer. The estimation programs are available in standard statistical 
packages such as S-Plus, and can also be easily written in other programming languages. In addition, 
since GARCH models can be asymptotically represented by ARCH processes, an ARCH model with an 
appropriate chosen number of lags can practically provide a good approximation 
 
.We estimate VaR in international equity markets using weekly return series for four major world equity 
market indexes: the U.S. S&P 500 Composite Index, the Japanese Nikkei 225 Index, the U.K. FTSE 100 
Index, and the Hong Kong Hang Seng Index. We consider a combination of AR (in mean) and ARCH (in 
volatility) for the return series. The empirical results indicate that the quantile regression based method 
provides good coverage rates, and is better than the traditional estimation based on normality.The 
remainder of the article is organized as follows. Section 2 reviews relevant literature. Section 3 describes 
the quantile regression approach to VaR estimation, and provides data descriptions. Empirical results 
regarding estimated VaR and model performance are reported and discussed in section 4. Finally, Section 
5 contains the concluding remarks. 
 

T 
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LITERATURE REVIEW 
 
Although VaR is a relatively simple concept, its measurement is in fact a challenging task.  Currently 
there are two broad classes of methods in estimating VaR [see Beder (1995) and Duffie and Pan (1997) 
for surveys on this topic]. The first approach is based on the assumption that financial returns have normal 
(or conditional normal) distributions. Under this assumption, the estimation of VaR is equivalent to 
estimating conditional volatility of returns. Since there is a large and growing literature on volatility 
modeling itself, this class is indeed a large and expanding world (see, e.g., Jorian (1997)). However, there 
has been accumulated evidence that portfolio returns are usually not normally distributed. In particular, it 
is frequently found that market returns display negative skewness and excess kurtosis in the distribution 
of the time series. These findings suggest that VaR estimation by a more robust method is needed. 
  
The second class of VaR estimators is based on computing the empirical quantile nonparametrically (see, 
e.g. Jeong 2009); for example, using rolling historical quantiles. Although local, nearest neighbor and 
kernel methods are somewhat limited in their ability to cope with more than one or two covariates. Other 
approaches in estimating VaR include the hybrid method by Boudoukh, Richardson and Vhitelaw (1998), 
and the method based on the extreme value theory [see, for example, Boos (1984), McNeil (1998), and 
Neftci (2000)].We believe that the quantile regression method is well suited for estimating VaRs. 
Quantile regression was introduced by Koenker and Bassett (1978) and has now become a popular robust 
approach for statistical analysis.  The quantile regression method is an extension of the empirical quantile 
methods. While classical linear regression methods based on minimizing sums of squared residuals enable 
one to estimate models for conditional mean functions, quantile regression methods offer a mechanism 
for estimating models for the conditional quantile functions, thus quantile regression is capable of 
providing a complete statistical analysis of the stochastic relationships among random variables (see, e.g. 
Powell (1986), Gutenbrunner and Jureckova (1992), Buchinsky (1994), and Koenker and Portnoy (1996) 
among others for subsequent development in quantile regression theory. 
 
In recent years, quantile regression estimation for time-series models has gradually attracted more 
attention. In particular, Koul and Saleh (1992) studied quantile regression methods for the traditional 
autoregressive processes and Koul and Mukherjee (1994) studied quantile regression in long-memory 
models. Portnoy (1991) studied asymptotic properties for regression quantiles with m-dependent errors, 
his analysis also allows for nonstationarity with a nonvanishing bias term. Koenker and Zhao (1996) 
extended quantile regression to ARCH models. Engle and Manganelli (1999) propose a CaVaR model 
based on the regression quantiles. Recently, Koenker and Xiao (2006) studied the quantile autoregression 
(QAR) models that can capture systematic influences of conditioning variables on the location, scale and 
shape of the conditional distribution of the response. Bouyé and Salmon (2008); Chen, Koenker and Xiao 
(2009) employ parametric copula models to generate nonlinear-in-parameters quantile autoregression 
models.The ARCH/GARCH models have been proved to be extremely successful in modeling financial 
returns.  For this reason, much of the literature in VaR estimation considers ARCH type models. 
However, estimation of these models in the literature is usually based on the assumption that financial 
returns have normal (or conditional normal) distributions. There is accumulating evidence that financial 
time series display negative skewness and excess kurtosis. Extreme realizations of returns can adversely 
affect the performance of estimation and inference designed for Gaussian conditions; this is particularly 
true of ARCH and GARCH models whose estimation of variances are very sensitive to large innovations. 
For this reason, we propose using quantile regression methods to estimate VaR in ARCH models. 
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DATA AND METHODOLOGY  
 
Data 
 
The data used in the following empirical analysis are the weekly return series, from September 1976 to 
August 1999, of five major world equity market indexes: the U.S. S&P 500 Composite Index, the 
Japanese Nikkei 225 Index, the U.K. FTSE 100 Index, the Hong Kong Hang Seng Index, and the 
Singapore Strait Times Index. The FTSE 100 Index data are from January 1983 to September 1999. Table 
1 reports some summary statistics of the data. 
 
Table 1: Summary Statistics of the Data 
 

 S&P 500 Nikkei 225 FTSE 100 Hang Seng SingaporeST 
Mean 0.0016 0.0011 0.0023 0.0029 0.0015 
Std. Dev 0.0211 0.0242 0.0218 0.0393 0.0326 

Max 0.0818 0.1214 0.0982 0.1542 0.1096 

Min -0.1666 -0.1089 -0.1782 -0.3497 -0.4747 

Skewness -0.5343 -0.2873 -1.0405 -1.1830 -2.6771 

Excess Kurtosis 3.3987 3.1968 8.4345 7.0583 37.9887 

AC(1) 0.0045 -0.0366 0.0534 0.1162 0.0685 
AC(2) 0.0005 0.0971 0.0523 0.0922 0.0072 
AC(3) 0.0084 0.0247 -0.0181 -0.0016 0.0324 
AC(4) -0.0082 -0.0417 -0.0190 -0.0677 0.0101 
AC(5) -0.0215 -0.0057 -0.0084 -0.0470 0.0448 
AC (10) -0.0256 -0.0167 0.0125 -0.0241 -0.0213 

This table shows the summary statistics for the weekly returns of five major equity indexes of the world. AC(k) denotes autocorrelation of order k. 
The sample period is from September 1976 to August 1999, except for FTSE 100 which starts in January 1983. The source  of the data is the 
online data service Datastream. 
 
The mean weekly returns of the five indexes are all over 0.1% per week, with the Hang Seng Index 
producing an average return of 0.29% per week, an astonishing 32-fold increase in the index level over 
the 24-year sample period. In comparison, the Nikkei 225 index only increased by 3-fold. The Hang 
Seng's phenomenal rise does not come without risk. The weekly sample standard deviation of the index is 
3.93%, the highest of the five indexes. In addition, over the sample period the Hang Seng suffered four 
larger than 15% drop in weekly index level, with maximum loss reaching 35%, and there were 23 weekly 
returns below -10%! As has been documented extensively in the literature, all five indexes display 
negative skewness and excess kurtosis. The excess kurtosis of Singapore Strait Times Index reached 
37.99, to a large extent driven by the huge one week loss of 47.47% during the 1987 market crash. The 
autocorrelation coefficients for all five indexes are fairly small. The Hang Seng Index seems to display 
the strongest autocorrelation with the AR(1) coefficient equal to 0.116 and AR (2) coefficient equal to 
0.092. 
 
Estimating VaR by Regression Quantiles 
 
For ease of exposition, we define Value-at-Risk as the percentage loss in market value over a given time 
horizon that is exceeded with probability p. That is, for a time series of returns on an asset {𝑟}𝑡=1𝑛  , find 
VaRt such that 
 
𝑃𝑟(𝑟𝑡 < −𝑉𝑎𝑅𝑡|𝐼𝑡−1  )  = 𝑝,           (1) 
 
Where 𝐼𝑡−1 denotes the information set at time t - 1. From this definition, it is clear that finding a VaR 
essentially is the same as finding a 100p% conditional quantile. Koenker and Bassett (1978) show how a 
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simple minimization problem yielding the ordinary sample quantiles in the location model can be 
generalized naturally to the linear model, generating a new class of statistics called regression quantiles. 
 
To motivate regression quantile, let's first consider estimating a simple pth sample quail- tile. It is clear 
that the estimator is the solution to the following minimization problem 
 

𝑚𝑖𝑛
𝑏 ∊ ℜ

[ ∑
𝑡 ∊ {𝑡: 𝑟𝑡  ≥ 𝑏} 𝑝|𝑟𝑡− 𝑏| + ∑

𝑡 ∊ {𝑡: 𝑟𝑡  < 𝑏}   (1 –  𝑝) |𝑟𝑡 −  𝑏| ].      (2) 

 
 
When the quantile is the median, p= 0.5, we have an important special case: the estimator that minimizes 
the sum of absolute residuals - the median estimator. 
 
Such a device can be generalized to regressions. If we define a k by 1 vector of regressors,𝑥𝑡, and consider 
the regression model 
 
𝑟𝑡 =  𝑏′𝑥𝑡 + 𝑢𝑡                                                                        (3) 
 
with i.i.d. residual {𝑢𝑡}, then, conditional on the regressor xt, the p-th quantile of  rt is given by 
 
 𝐹𝑟𝑡
−1(𝑝|𝑥𝑡  ) =  𝑖𝑛𝑓 {𝑦|𝐹𝑟𝑡(𝑦|𝑥𝑡)  ≥  𝑝 } =  𝑏′𝑥𝑡 + 𝐹𝑢−1(𝑝).             

 
where  𝐹𝑢 (.) is the cumulative distributional function of the residual. Conventionally the 
first component of the regressors 𝑥𝑡 is an intercept term and we have 
 
 𝐹𝑟𝑡
−1(𝑝|𝑥𝑡) =  (𝑝)  + = 𝑏 ,             

 
Where 
 
𝑏(𝑝) = (𝑏1 + 𝐹𝑢−1(𝑝), 𝑏2, … , 𝑏𝑘). 
                                          
The regression quantile process corresponding to model (3) is determined by the following optimization 
problem 
 

𝑏� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑏 ∊ ℜ𝑘

 � ∑
𝑡 ∊ {𝑡: 𝑟𝑡  ≥ 𝑥𝑡𝑏} 𝑝|𝑟𝑡−  𝑥𝑡 

′ 𝑏| +  ∑
𝑡 ∊ {𝑡: 𝑟𝑡  < 𝑥𝑡𝑏}  �1 –  𝑝�|𝑟𝑡 −  𝑥𝑡′ 𝑏| �.  (4) 

 
The estimator 𝑏�(𝑝) generalizes the concept of pth sample quantile to the pth regression quantile. In this 
ease, the least absolute error estimator is the regression median. i.e., the 
regression quantile for p = 0.5. Koenker arid Bassett (1978) show that 𝑏�(𝑝) is a root-n 
consistent estimator of 𝑏�(𝑝). and √𝑛 �𝑏�(𝑝) −  𝑏(𝑝)�converges weakly to a normal distribution. 
 
The quantile regression theory can be extended to time series models with conditional heteroskedasticity. 
Consider a return process {rt} generated by the following regression model with conditional 
heteroscedasticity 
 
𝑟𝑡 =  𝛼 ′𝑥𝑡 +  𝑢𝑡            (5) 
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where the error term satisfies 
 
𝑢𝑡 = ( 𝛾0 + 𝛾1|𝑢𝑡−1| +  … + 𝛾𝑞 �𝑢𝑡−𝑞�ℇ𝑡,          
 (6) 
 
with 𝛾0 > 0, (𝛾1, . . . , 𝛾𝑞) 

′ ∊ ℜ+
𝑞 , then this is a time series with ARCH effect. Here we assume that the 

innovations {ℇ𝑡 } have a general distribution F(.), including the normal distribution and other commonly 
used distributions in financial applications with heavy tails. In model (5), 𝑥𝑡 is the vector of regressors 
which may include lag values of the dependent variable. When 𝑥𝑡 = (1, 𝑟𝑡−1, . . . , 𝑟𝑡−𝑝)′, , model (5) 
reduces to the case of Koenker and Zhao (1996). 
 
By definition, VaRt at p-percent level is just the conditional quantile of 𝑟𝑡 in the model of (5) and (6) 
given information to time t - 1, i.e.𝐼𝑡−1. Thus, the conditional value at risk (VaRt) at p-percent level is 
 
 −𝑉𝑎𝑅𝑡(𝑝) = 𝛼 ′𝑥𝑡 +  � 𝛾0 + 𝛾1|𝑢𝑡−1|+ … + 𝛾𝑞 �𝑢𝑡−𝑞��𝐹−1(𝑝) = ⍺α′𝑥𝑡 + 𝛾(𝑝)′𝑍𝑡                        
  
Where  
 
 𝑍𝑡 = (1, |𝑢𝑡−1| , . . . , �𝑢𝑡−𝑞� )′ 
 
and 
 
𝛾(𝑝)′ = (𝛾0,𝛾1, . . . , 𝛾𝑞)𝐹−1( 𝑝).   
 
Quantile regression provides a direct approach of estimating the γ(p) and other parameters, thus delivering 
an estimator of VaRt(p). In particular, the ARCH parameters 7, γ(p) can be estimated by the following 
problem 
 

𝛾� (𝑝) =  arg 𝑚𝑖𝑛
𝛾 ∊ ℜ𝑘

[
∑

𝑡 ∊ {𝑡:𝑢𝑡 ≥ 𝑧𝑡′𝛾}   𝑝�𝑢𝑡−  𝑧𝑡 
′ 𝛾�  +

∑
𝑡 ∊ {𝑡:𝑢𝑡  < 𝑧𝑡′𝛾}(1 –  p)�𝑢𝑡 −  𝑧𝑡′ 𝛾�]        (7) 

 
 
Koenker and Zhao (1996) show that 𝛾�(p) is a root-n consistent estimator of y (p). In practice, we can 
replace 𝑢𝑡  and 𝑍𝑡 by their (say, OLS) estimators and, under mild regularity conditions, the resulting 𝑦�(p) 
is still a root-n consistent estimator of 𝛾 (p). 
 
Quantile regression method has the important property that it is robust to distributional assumptions. This 
property is inherited from the robustness property of the ordinary sample quantiles. Quantile estimation is 
only influenced by the local behavior of the conditional distribution of the response near the specified 
quantile.Computation of the regression quantiles by standard linear programming techniques is very 
efficient. It is also straightforward to impose the nonnegativity constraints on all elements of Υ. Barrodale 
and Roberts (1974) proposed the first efficient algorithm for 𝐿1- estimation problems based on modified 
simplex method. For very large quantile regression problems there are some important new ideas that 
speed up the performance of computation relative to the simplex approach underlying the original code. 
Portnoy and Koenker (1997) describe an approach that combines some statistical preprocessing with 
interior point methods and achieves faster speed over the simplex method for very large problems. 
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ARCH VaR Model Selection 
 
Given the model (5) and (6), if the lags are correctly selected we should have Pr { 𝑟𝑡 < 𝑉𝑎𝑅𝑡(𝑝)}  =  𝑝 at 
the true parameter. As a result, {𝑒𝑡: 𝑒𝑡 = 𝐼[𝑟𝑡 < −𝑉𝑎𝑅𝑡(𝑝)] − 𝑝} should be i.i.d. In contrast, when the 
lags are incorrectly chosen, {𝑒𝑡} will be serially dependent. Therefore, to test the adequacy of lag choice, 
it suffices to check whether {𝑒𝑡} is i.i.d. 
 
There have been several statistical procedures for testing the i.i.d. assumption. In the case of Gaussian 
time series, the standardized spectral density captures all serial dependencies. Consequently, any 
deviation of the spectral density from uniformity is an evidence of serial dependence and thus we can test 
serial dependence in {𝑒𝑡} using the standardized spectral density approach (Hong 1996). More generally, 
for non-Gaussian time series, the higher order spectral method or the generalized spectral method may be 
used in testing serial dependence (Hong 1999). [see also Cowles and Jones (1937), L.jung and Box 
(1978), etc., for related topics.] 
 
Another popular method used in selecting lag length is to conduct sequential tests for the significance of 
the coefficients on lags. Such an approach provides a model selection strategy which chooses between a 
model with, say, k lags and a model with q=k + l lags. Koenker and Zhao (1996) show that a 𝑥2 test can 
be constructed for hypothesis of the type 𝐻0: 𝑅𝛾= 0. Under Ho, the following Wald statistic converges to 
a centered chi-square distribution with s degrees of freedom (where s is the number of restrictions) 
 
𝑇𝑛 = 𝑛𝜔�−2(𝑅𝛾�(𝑝))′[𝑅𝐷�1−1𝐷�0𝐷�1−1𝑅′]−1 𝑅𝛾�(𝑝),       (8) 
 
where 𝜔2 = 𝑝(1 − 𝑝)/𝑓(𝐹−1(𝑝))2, D0 = EZZ' and D1 = EZZ'/σ. This procedure can be applied to testing 
the significance of lag coefficients. If we are choosing between k lags and q = k +1 lags, let R be a 
diagonal matrix with the k+1 to q-th diagonal elements equal to ones and others equal to zeros, 
 
𝑅 = 𝑑𝑖𝑎𝑔[0, … , 0, 1, … , 1],         (9) 
 
then the corresponding statistic 𝑇𝑛 in (8) is used in testing the significance of coefficients 𝛾𝑘+1 ,. . . ,𝛾𝑞. In 
practice, we select a priori a big enough number𝑞𝑚𝑎𝑥 , then we choose the lag length from possible values 
{1, . . . , 𝑞𝑚𝑎𝑥}. The procedure starts with the most general model which has 𝑞𝑚𝑎𝑥 lags and tests whether 
the last lag coefficient is significant. If it is, then 𝑞𝑚𝑎𝑥 is chosen. Otherwise, we estimate the model 
with 𝑞𝑚𝑎𝑥- 1 lags. This is a sequential procedure which is repeated until a rejection occurs. 
 
RESULTS 
 
For each time series of the five international equity index, we first conduct model specification analysis 
and choose the appropriate lags for the mean equation and the ARCH component. Based on the selected 
model, we use Equation (1) to obtain a time series of residuals. The residuals are then used in the ARCH 
VaR estimation described in (7).  
 
Model Specification Analysis 
 
We conduct sequential tests for the significance of the coefficients on lags. The inference procedures we 
use here are asymptotic inferences. For estimation of the covariance matrix, we use the robust HAC 
(Heteroskedastic and Autocorrelation Consistent) covariance matrix estimator of Andrews (1991) with 
the data-dependent automatic bandwidth parameter estimator recommended in that paper. First of all, we 
choose the lag length in the autoregression 
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𝑟𝑡 = 𝛼0 + 𝛼1𝑟𝑡−1 + … + 𝛼𝑠𝑟𝑡−𝑠 + 𝑢𝑡,         (10) 
 
using a sequential test of significance on lag coefficients. The maximum lag length that we start with is s 
= 9, and the procedure is repeated until a rejection occurs. Table 2 reports the sequential testing results 
for the S&P 500 index.  
 
Table 2: VaR Model Mean Specification Test for the S&P 500 Index 
 

Round 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 
   α0 3.6193*** 3.5529*** 3.7008*** 3.5246** 3.6824** 3.7304*** 3.6843*** 3.6453*** 3.8125*** 
   α1 -1.8916 -1.9735* -1.9903* -2.0020** -1.9996* -1.9735* -2.0147** -2.004** -2.104** 
   α2 0.2432 0.2143 0.1474 0.0786 0.0872 0.0833 0.0935 0.0942  
   α3 -0.8676 -0.8220 -0.7795 -0.7899 -0.8123 -0.8162 -0.8162   
   α4 -0.1470 -0.1780 -0.1717 -0.1412 -0.1610 -0.1612    
   α5 -0.5730 -0.5771 -0.5940 -0.5670 -0.5677     

   α6 
-0.6055 -0.5934 -0.6112 -0.6102      

   α7 0.1783 0.1895 0.1895       
   α8 1.3186 1.3191        

   α9 
 
0.2034         

This table reports the test results for the VaR model mean equation specification for the S& P500 Index. The number of lags in the AR component 
of the ARCH model is selected according to the sequential test. The table reports the t-statistic for the coefficient with the maximum lag in the 
mean equation. .*,**,***, indicate significance at the 10,5 and 1 percent levels respectively. 
 
The t-statistics of all coefficients are listed for nine rounds of the test. The significance level of the t-ratios 
are indicated in Table 2.  *, **, *** indicates significance at 10, 5 and 1 percent level respectively. The t-
statistic of the coefficient with the maximum number of lags does not become significant until S = 1, the 
9th round. The preferred model is an AR(1) model. We then report the selected mean equations for all 
five indexes in Table 3. 
 
Table 3: ARCH VaR Models Selected by the Sequential Test 
 

Index Mean Lag 5% ARCH Lag 1% ARCH Lag 
S&P 500  1 7 10 
Nikkei 225  2 8 8 
FTSE 100  1 6 6 
Hang Seng  4 7 9 
Singapore ST  1 7 9 

This table summarizes the preferred ARCH VaR models for the five global market indexes. The number of lags in the mean equation and the 
volatility component of the ARCH model are selected according to the test. 
 
Our next task is to select the lag length in the ARCH effect 
 
𝑢𝑡 = �𝛶0 + 𝛶1|𝑢𝑡−1| + ⋯+ 𝛶𝑞�𝑢𝑡−𝑞��.         (11) 
 
Again, a sequential test is conducted using the results of (8). To calculate the t-statistic, we 
need to estimate 𝜔2 = 𝑝 (1 − 𝑝)/𝑓(𝐹−1(𝑝))2. There are many studies on estimating 𝑓(𝐹−1(𝑝)), 
including Siddiqui (1960) and Sheather and Maritz (1983). 
 
Notice that 
 
 𝑑𝐹

−1(𝑡)
𝑑𝑡

= 1
𝑓(𝐹−1(𝑡))

 ,          (12) 
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following Siddiqui (1960), we may estimate  (12) by a simple difference quotient of the empirical 
quantile function. As a result, 
 
 𝑓 (𝐹−1�  (𝑡)) = 2ℎ𝑛

𝐹�−1  (𝑡+ ℎ𝑛)− 𝐹�−1  (𝑡− ℎ𝑛) ,        (13) 
 
where 𝐹�−1(t) is an estimate of F-1(t) and ℎ𝑛 is a bandwidth which goes to zero as n→∞. A bandwidth 
choice has been suggested by Hall and Sheather (1988) based on Edgeworth expansion for studentized 
quantiles. This bandwidth is of order 𝑛−1 3⁄  and has the following representation  
 
ℎ𝐻𝑆 =  𝑧𝛼

2 3⁄ [1.5𝑠(𝑡)/𝑠"(𝑡)]1 3⁄ 𝑛−1 3⁄ ,          (14) 
 
where  𝑧𝛼⍺ 𝑠atisfies  Φ�𝑧𝛼⍺� = 1 −  𝛼/2 for the construction of 1 - α confidence intervals. In the absence 
of additional information, s(t) is just the normal density. Starting with 𝑞𝑚𝑎𝑥 =10, a sequential test was 
conducted and results for the 5% VaR model of the S&P 500 index are reported in Table 4. We see that in 
the fourth round, the t-statistic on lag 7 becomes significant. The sequential test stops here, and it suggests 
that ARCH(7) is appropriate. 
 
Table 4: 5% VaR Model ARCH Specification Test for the S&P 500 Index 
 

Round 1st 2nd 3rd 4th 
𝑦0  -20.621* -25.110* -27.081* -19.789* 
𝑦1 2.8911* 3.3601* 3.2420* 3.1658* 
𝑦2  1.9007 2.9561* 2.8366* 2.5561* 
𝑦3 0.9982 1.0886 0.9567 1.2560 
𝑦4 0.7737 1.0099 2.2672 1.5672 
𝑦5 0.6919 0.8564 1.1111 0.8689 
𝑦6 0.2336 0.3366 0.5244 0.2688 
𝑦7 2.3406* 2.5219* 0.2318 2.8891* 
𝑦8  0.4866 0.4688 1.3248  
𝑦9 1.1644 0.9921   

    𝑦10       1.4665    
This table reports the test results for the 5 % VaR model specification for the S& P500 Index. The number of lags in the volatility component of 
the ARCH model is selected according to the test. The table reports the t-statistic for the coefficient with the maximum lag in the ARCH equation. 
.*,**,***, indicate significance at the 10, 5 and 1 percent levels respectively. 
 
Based on the model selection tests, we decide to use the AR(1)-ARCH(7) regression quantile model to 
estimate 5% VaR for the S&P 500 index. We also conduct similar tests on the 5% VaR models for other 
four indexes and on the 1% VaR models for all five indexes. To conserve space we do not report the 
entire testing process in the paper. The results are available from the author. The mean equations 
generally have one or two lags, except the Hang Seng Index, which has a lag of 4 and displays more 
persistent autoreggressive effect. 
 
For the ARCH equations, at least 6 lags are needed for the indexes. The longest lag, at 10, is for the 10% 
ARCH VaR model for the S&P 500 index. The 1% VaR models require at least as many lags in the 
ARCH equation as the 5% VaR model. For the Nikkei 225 and FTSE 100 indexes, the lengths of the 
ARCH lags are the same for the 1% and 5% VaR models. Since the estimation program for the regression 
quantile VaR model is very efficient, lags up to 10 in the ARCH equation are very easy to handle. 
 
Estimated VaRs 
 
The estimated parameters for the mean equations for all five indexes are reported in Table 5. The constant 
term for the five indexes is between 0.1% for the Nikkei and 0.26% for the Hang Seng. As suggested by 
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Table 1, the Hang Seng seems to display the strongest autocorrelation and this is reflected in the 4 lags 
chosen by the sequential test.  
 
Table 5: Estimated Mean Equation Parameters 
 

 
 
 
 

 

S&P 500 Nikkei 225 FTSE 100 Hang Seng Singapore ST 
𝛼0 0.0021*** 0.0010*** 0.0021*** 0.0026*** 0.0015*** 

 (0.0006) (0.0007) (0.0007) (0.0011) (0.0009) 

𝛼1 -0.0558** -0.0327** 0.0553** 0.1090** 0.0655** 

 (0.0265) (0.0288) (0.0270) (0.0289) (0.0289) 

𝛼2  0.0953**  0.0880**  

  (0.0288)  (0.0291)  
𝛼3    -0.0136**  

    (0.0291)  
𝛼4    -0.0740**  

    (0.0289)  
 

This table reports the estimated parameters of the mean equation for the five global equity indexes. The standard errors are in parentheses under 
the estimated parameters.*,**,***, indicate significance at the 10, 5 and 1 percent levels respectively. 
 
Tables 6 and 7 report the estimated ARCH parameters for the 5% VaR and 1% VaR models, respectively. 
The coefficients on the lagged absolute residuals are mostly positive. The negative coefficients are all 
statistically insignificant, with the exception of one. The selected ARCH models are relatively long, 
ranging from 6 lags to 10 lags. This is largely due to the fact that, when the conditional variances have 
relatively complicated structures, we usually need ARCH models with many lags to deliver good 
approximations of such general volatility models. 
 
Table 6: Estimated ARCH Equation Parameters for the 5% VaR Model 
 

Parameter S&P 500 Nikkei 225 FTSE 100 Hang Seng Singapore ST 

𝑦0 -0.0342*** -0.0395*** -0.0335*** -0.0637*** -0.0456*** 
 (0.0017) (0.0022) (0.0014) (0.0032) (0.0025) 

𝑦1 0.2129* 0.0645* 0.0506* 0.1691* 0.1089** 
 (0.0672) (0.0554) (0.0697) (0.0795) (0.0489) 

𝑦2  

 
0.1103** 

 
0.2005** 

 
0.0595* 

 
0.1092** 

 
0.1559* 

 (0.0432) (0.0429) (0.0686) (0.0339) (0.0653) 
𝑦3 -0.0196** 0.1043* 0.0298** 0.2282** 0.0223** 

 (0.0156) (0.0633) (0.0261) (0.0376) (0.0428) 

𝑦4 
 
0.1319* 

 
0.0453** 

 
0.0601* 

 
0.0733** 

 
0.1061* 

 (0.0842) (0.0390) (0.0883) (0.0296) (0.0813) 
𝑦5 0.0167** 0.0996** -0.0174** 0.0235** 0.1479** 

 (0.0192) (0.0446) (0.0143) (0.0371) (0.0491) 

𝑦6 0.0253* 0.0173** 0.0948** 0.0193* 0.0299** 

 (0.0941) (0.0326) (0.0478) (0.0530) (0.0206) 

𝑦7 0.0002*** 0.2553** 0.0948** 0.0917** 0.1036** 
 (6.92E-5) (0.0360) (0.0478) (0.0423) (0.0437) 

𝑦8  0.1374**    
  (0.0447)    

This table reports the estimated parameters of the ARCH equation for the 5% VaR model for the five global indexes. The standard errors are in 
parentheses under the estimated parameters. .*,**,***, indicate significance at the 10, 5 and 1 percent levels respectively. 
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Based on our model estimation of the U.S. S&P 500 index, for the 5% VaR, the estimated VaRs generally 
range between 2.5% and 5%, but during very volatile periods they could jump over 10%, as happened in 
October 1987. The 1% VaRs lie above the 5% VaRs. The two series overlap each other most of the time, 
but they are very much separate from each other from 1992 to 1994 when overall market volatility is 
relatively low. During high volatility periods, there is high variation in estimated VaRs and 5% and 1% 
VaRs overlap each other more often. Certainly on a particular date, the 1% VaR lies above the 5% VaR. 
 
Table 7: Estimated ARCH Equation Parameters for the 1% VaR Model 
 

Parameter S&P 500 Nikkei 225 FTSE 100 Hang Seng Singapore ST 
𝑦0 -0.0523*** -0.0650*** -0.0551*** -0.1126*** -0.0797*** 

 (0.0039) (0.0037) (0.0048) (0.0080) (0.0044) 

𝑦1 0.2678** -0.0536 0.2842 0.3033 0.0893* 
 (0.0679) (0.2367) (0.1013) (0.1449) (0.0564) 

𝑦2  
0.1783 

 
0.2336** 

 
0.0435 

 
0.3158 

 
0.3012* 

 (0.1291) (0.0259) (0.1492) (0.1858) (0.0980) 
𝑦3 

 
-0.0878 0.0929* 0.1582 0.3675 0.1141* 

 (0.2933) (0.0946) (0.1397) (0.1346) (0.0584) 

𝑦4 0.1644* 0.0507 -0.0828 0.0463* 0.0562 
 (0.0540) (0.1561) (0.1424) (0.0642) (0.1029) 

 0.0971 0.0335* 0.1777 0.1013* -0.0710 
 (0.3457) (0.0527) (0.1312) (0.0658) (0.1522) 

𝑦6  
0.1557 

 
0.0903** 

 
0.1405* 

 
0.0140 

 
0.0183** 

 (0.1057) (0.0418) (0.0502) (0.2306) (0.0305) 

𝑦7  
0.1992 

 
0.4277*   

0.1121* 
 
0.2293 

 (0.1533) (0.0733)  (0.0659) (0.1208) 

𝑦8  
-0.0938* 

 
0.1707*   

0.0891 
 
-0.0222 

 (0.0722) (0.0657)  (0.3770) (0.1314) 

𝑦9 
 
-0.0394    

0.4309 
 
0.1320* 

 (0.1267)   (0.1408) (0.0616) 

𝑦10  
-0.1892*     

 (0.0696)     

This table reports the estimated parameters of the ARCH equation for the 1% VaR model for the five global indexes. The standard errors are in 
parentheses under the estimated parameters. .*,**,***, indicate significance at the 10, 5 and 1 percent levels respectively. 
 
The Japan-NIKKEI 225 results show that the estimated weekly 5% and 1% VaRs for the Nikkei 225 
Index are quite stable and remain at the 4% and the 7% level from 1976 till 1982. Then the Nikkei 225 
Index took off and appreciated about 450% over the next eight years, reaching its highest level at the end 
of 1989. This quick rise in stock value is accompanied by high risk, manifested here by the more volatile 
VaR series. In particular, the VaRs fluctuated dramatically, ranging from a low of 3% to a high of 15%. 
This volatility in VaR may reflect optimistic market outlook at times as well as worry about high 
valuation and the possibility of a market crash. That crash did come in 1990, and ten years later, the 
Nikkei 225 Index still hovers around at a level which is about half off the record high in 1989. The 1990s 
is far from a rewarding decade for investors in the Japanese equity market. The mean annual return from 
the Nikkei 225 Index is negative and risk is at a high level. Average weekly 5% VaR is about 5%, and 
about 7% for the 1% VaR. The variation in both series is also very high, bouncing between 13.5% and -
1%. The estimated 5% and 1% VaRs for the U.K. Financial Times 100 Index appreciated 7-fold over the 
16-year sample period. The 5% VaR is very stable and averages about 3%. They stay very much within 
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the 2% - 4% band, except on a few occasions, such as the 1987 global market crash. The 1% VaR is also 
more stable than that of the Nikkei 225 Index, mostly ranging between 4% and 8%. Compared with the 
SP 500 Index and the Nikkei 225 Index, the overlap between the 5% VaR and the 1% VaR is minimal. 
 
The Hong Kong Hang Seng Index produces an average return of 0.29% per week, an astonishing 32-fold 
increase in the index level over the 24-year sample period. The Hang Seng's phenomenal rise does not 
come without risk. We mentioned above that the weekly sample standard deviation of the index is 3.93%, 
the highest of the five indexes. In addition, the Hong Kong stock market has had more than its fair share 
of the market crashes. If we define a market crash as having the main index drop at least 15% in a week, 
then Hong Kong experienced four market crashes in 24-year sample period. The average 5% VaR over 
the sample is about 7%, and the average 1% VaR is about 12%, both the highest among the five indexes. 
The variation in the estimated VaR is huge, in particular the 1% VaRs. It ranges from 0% to 34%, the 
largest of the five indexes.Interestingly, for Singapore Strait Times index, the estimated VaRs display a 
pattern very similar to that of the U.K. FTSE 100 Index, although the former is generally larger than the 
latter. The higher risk in the Singapore market did not result in higher return over the sample period. 
Among the five indexes, the Singapore market suffered the largest loss during the 1987 crash, a 47.5% 
drop in a week. The market has since recovered much of the loss. Among the five indexes, the Singapore 
market only outperformed the Nikkei 225 Index over the entire 24-year sample period. 
 
Performance of the ARCH Quantile Regression Model 
 
In this section we conduct empirical analysis to help us understand the difference in dynamics between 
VaRs estimated by regression quantiles and those by volatility models with the conditional normality 
assumption. There are extensive empirical evidences supporting the use of the GARCH models in 
conditional volatility estimation. Bollerslev, Chou, and Kroner (1992) provide a nice overview of the 
issue. Furthermore, Engle and Ng (1993), Glosten, Jagannathan, and D. E. Runkle (1993), Bekaert and 
Wu (2000), and others have demonstrated that asymmetric GARCH models outperform those that do not 
allow the asymmetry, i.e., negative return shocks increase conditional volatility more than the positive 
return shocks. Therefore we estimate asymmetric GARCH(1,1) models and then produce VaR estimates 
by assuming conditional normality of the return. We also estimated several other ARCH models, with and 
without the asymmetric volatility specification. The regular GARCH(1,1) and asymmetric GARCH(1,1) 
produce similar performances in terms of the VaR test described below.  
 
We estimated the 5% VaRs of the S&P 500 Index estimated by the ARCH regression quantiles. and the 
asymmetric GARCH(1,1) model with the conditional normality assumptions. We see that these two series 
actually track each other pretty well, although the VaR series estimated by regression quantile seem to be 
higher than the GARCH VaR during low volatility periods. However, during very volatile markets, as 
during the 1987 market crash, the GARCH plus normality approach produces much higher VaR 
estimates. This could be due to the fact that large return shocks produce large volatility estimates in the 
GARCH setting. Value at risk after a market crash could be too high based on this approach. The quantile 
regression approach seems to generate an increased VaR at a more reasonable level. 
 
To measure the relative performance more accurately, we compute the percentage of realized returns that 
are below the negative estimated VaRs. The results are reported in Table 8. The top panel of the table 
presents the percentages for the VaRs estimated by the ARCH regression quantile model, and the bottom 
panel for the VaRs estimated by the asymmetric GARCH model with the conditional normal return 
distribution assumption. For the 1% VaR, we see that the regression quantile method produces the 
percentage that is closer to the 1% mark for all five series. The GARCH approach seems to underestimate 
the VaRs consistently. For the 5% VaR, the regression quantile method produces the percentage that is 
closer to the 5% mark for all series, except for the FTSE 100. But now the GARCH approach seems to 
overestimate the VaRs consistently. To look at this more closely we extend the analysis for the S&P 500 
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Index. We estimate VaRs using the two methods at 2%, 4%, 6%, 10%, 15%. Now we have a total of 7 
percentage levels. The regression quantile method produces the closest percentage at all percentage 
levels, and the percentages scatter around the true value. However, the GARCH method seems to 
underestimate VaRs for the smaller percentages (1% and 2%), and overestimate VaRs for the larger 
percentages (larger than or equal to 4%). 
 
Table 8: VaR Model Performance Comparison 
 

% VaR 1% 2% 4% 5% 6% 10% 15% 
  VaR by Regression Quantile   

S&P 500 1.339 1.925 4.168 5.2874 6.276  9.791 
 
14.819 

Nikkei 225 1.340 2.011 4.312 5.7084 6.581 10.210 14.564 

FTSE 100 0.694 1.867 3.658 5.5868 5.232  8.951 
12.372 

Hang Seng 0.755 2.113 4.222 4.8902 5.512  9.348 13.558 
 VaR, by GARCH Normality Assumption   
S&P 500 1.1976 1.7964 3.1936 4.0918 4.9900    7.6846 12.4750 

Nikkei 225 1.2974 1.9960 3.5928 4.6906 5.2894 8.5828 12.3752 

FTSE 100 0.9980 1.6966 2.9940 3.4930 3.8922 6.5868 9.7804 

Hang Seng 1.8962 2.8942 3.3932 3.6926 4.1916 7.1856 10.9780 

 
 
 
 
 
 

VaR by RiskMetrics 
   

S&P 500 0.4990 0.4990 0.6986 0.7984 0.7984 2.0958 3.5928 

Nikkei 225 0.5988 0.7984 0.9980 0.9980 1.2974 2.2954 1.4910 

FTSE 100 0.1996 0.1996 0.2994 0.7984 0.8982 1.7964 3.6926 
Hang Seng 0.7984 0.8982 1.3972 1.3972 1.5968 2.6946 3.7924 

This table reports the coverage ratios, i.e., the percentage of realized returns that are below the estimated VaRs. The top panel reports the 
performance of the VaRs estimated by the ARCH regression quantile model. The middle panel reports the results for VaRs estimated by the 
asymmetric GARCH model with the conditionally normal return distribution assumption. The bottom panel reports the results for VaRs estimated 
by the RiskMetrics method. 
 
The five indexes we analyzed are quite different in their risk characteristics as discussed above. The 
ARCH quantile regression approach seems to be robust and can consistently produce very good estimates 
of the VaRs at different percentage (probability) levels. The asymmetric GARCH model, being a very 
good volatility model, is not able to produce good VaR estimates with the normality assumption. The 
ARCH quantile regression model does not assume normality and is well suited to hand negative skewness 
and heavy tails.  
 
CONCLUDING COMMENTS 
 
In this paper we estimate value at risk using the quantile regression approach pioneered by Koenker and 
Bassett (1978). Comparing to the widely use RiskMetric method and other methods based on 
distributional assumptions, this method does not assume a particular conditional distribution for the 
returns. This is particularly important in VaR estimation because return data are well-known to be non-
Gaussian. We apply the model to weekly return series of five major world equity market indexes: the U.S. 
S&P 500 Index, the Japanese Nikkei 225 Index, the U.K. FTSE 100 Index, the Hong Kong Hang Seng 
Index, and the Singapore Strait Times Index. The empirical results found that the quantile regression 
based method is more robust than RiskMetrics. These results regarding VaR estimation may have 
important implications for risk management practices.There are several directions for future research. 
First, our analysis in this paper is based on univariate analysis. Informative covariates may be introduced 
to improve the accuracy of estimation. Second, nonlinear models such as Copula models and GARCH 



The International Journal of Business and Finance Research ♦ VOLUME 7 ♦ NUMBER 2 ♦ 2013 
 

13 
 

models may be considered to take into account nonlinearity in financial time series. We hope to explore 
these in future research. 
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