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ABSTRACT 

 
Genetic algorithms were the first evolutionary algorithm designed.  These algorithms simulate natural 
selection to produce good solutions quickly for complex problems.  Job shop scheduling with sequence 
dependent setup times is an NP-hard problem – any algorithm to optimize this problem has an 
exponential time.  We explore which parameters for a genetic algorithm allow it to solve these job shop 
problems in limited time trials.  Prior literature assumes the use of these parameters is beneficial, and the 
parameter values are selected either based on prior research values or from design of experiments on a 
limited range of parameter values. Multiple linear regression is used to determine which parameters can 
significantly improve solutions.  Our results show that a proportional 50/50 crossover parameter and a 
large population size are the two parameters to obtain good solutions in a constrained time environment. 
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INTRODUCTION 
 

equence dependent job shop scheduling (SDJSS) is a complex problem because it is NP-hard – any 
algorithm to optimize this problem has an exponential time – as the size of the problem increases, 
the computation time increases exponentially.  Because the setup time of the next job on a machine 

is dependent on what was run on the machine previously, there is no linear method to optimize this class 
of problems.  In shop floor scheduling, the most important objective is to produce a feasible schedule 
quickly.  In the space of all feasible solutions, company defined goals drive which feasible solutions are 
better, and even which one is optimal.  However, as the size of the problem becomes larger, and therefore 
nontrivial, the calculation time to find the optimal solution increases exponentially.  Pure heuristics are 
quick to produce feasible solutions, but when more constraints are added to the model of the 
manufacturing environment, they cannot handle this added realism so their solutions may be far from 
optimal.  We will test the ability of a genetic algorithm (GA) to achieve a good solution for complex job 
shop scheduling problems with sequence dependent setup times, staggered job release times (not all 
material is available for all jobs at time 0) and recirculation (a job can visit a machine multiple times).  
Genetic algorithms are a class of algorithms that can handle much complexity, and by design will 
converge toward an optimal solution as the number of iterations of the routine increases.  This research is 
important because finding the best solution in a limited time is highly relevant for business scenarios.  
Therefore, finding which parameters contribute to solution goodness, and which are not statistically 
relevant is of importance for finding better solutions via evolutionary algorithms.  Further, any parameters 
that do not contribute to solution goodness do not have to be programmed, thus reducing the complexity 
of the computer program and parameter value selections.  
  
This paper is organized into the following sections; first is a literature review of job shop scheduling, 
sequence-dependent setups in scheduling, and GAs as an optimization tool.  This is followed by sections 
containing a description of the problem we are trying to solve, the mechanics behind how a GA works in 
general and specifics on our genetic algorithm.  The next section contains the results of our regression 
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tests.  The final section is the summary and discussion of the implications of the results along with 
directions for future research.  
 
LITERATURE REVIEW 
 
By their nature, job shop scheduling problems are complex.  Job shops provide a unique scheduling 
problem because the routings are based upon the jobs that need to be processed; therefore the resource 
requirements are not based upon the quantity as in a flow shop, but rather on the routings for the products 
being produced.  Heuristics have been developed to find optimal nondelay schedules in a job shop 
environment (Hutchinson and Chang, 1990).  The heuristic in their paper minimizes makespan in an 
environment that does not contain sequence-dependent setup times.   Heuristics are often problem size 
independent, but provide good solutions according to single criteria objective functions only.   This 
research uses more real-world multiple criteria objective functions.  
 
Sequence dependent setup times are explored in the literature for flow shops (Vakharia and Chang, 1990).   
Single machine scheduling with sequence dependent setup times is also explored in the literature.  This 
problem is scheduled using a hybrid genetic algorithm (Miller, Chen, Matson and Liu, 1999).  Manikas 
and Chang (2009) use a genetic algorithm to solve sequence dependent setup time job shop scheduling 
problems.  However, their GA parameters and settings were based on limited experimental trials.  Rubin 
and Ragatz (1995) schedule n jobs on a single machine with sequence dependent setup times using a 
Genetic Algorithm.   A common solution to problems with sequence dependent setup times is to batch 
together like jobs to minimize setup times.  This has been done on single machine problems (Cheng et al., 
2001).   
 
Genetic algorithms are a viable approach to solving optimization problems.  The principles of GAs 
proposed by Holland (1975) are the foundation of evolutionary algorithms.    Genetic algorithms simulate 
evolution via natural selection.  The idea is to evolve a population of candidate solutions using operators 
inspired by natural genetic variation and natural selection (Mitchell, 1996). 
 
Classical job shop scheduling problems with a set of n jobs to be processed on m machines have been 
solved using a GA.  Candido (1998) adds realistic constraints and uses multiple objectives for their GA.  
The GA is used to find the initial solutions and refine locally improved solutions.  However, this routine 
cannot handle sequence-dependent setup times.  The ability of GAs to handle complex constraints is 
further shown by allowing dual-resource constraints in a scheduling problem (ElMaraghy, Patel, and 
Abdallah, 2000).  They achieve better solutions by forcing feasible solutions from birth rather than 
allowing infeasible solutions to exist in the population.  They choose to use a random initial population 
rather than heuristic based criteria to create an initial population that was intelligently designed.  The 
paper also shows that linear order crossover (LOX) performs better than partially matched crossover for 
their particular problem.  The LOX crossover method preserves the relative position between genes 
(Falkenauer and Bouffouix, 1991).    
 
A GA is used to solve a job-sequencing problem (Zhao and Wu, 2001).  They show that a feasible, good 
solution can be found in a reasonable time for this problem.  Ombuki and Ventresca (2004) introduce 
crossover and mutation operators as well as an encoding scheme that ensure the GA schedule remains 
deadlock free.  We chose to always have only feasible solutions in the population because scoring an 
infeasible solution regarding lateness does not make sense – an “on time” solution that was achieved by 
having operations scheduled not following the routing cannot be scored as a solution.  We encode 
machine sequences and use mutation and crossover operators that ensure those sequences are always 
feasible.   
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Tuning parameters such as population size and number of generations can have a positive effect, but 
Mattfeld and Bierwirth (2004) state that if the parameters are within useful bounds, the expected 
improvement usually does not justify the costs of finding an even more appropriate fine tuning.  Using 
domain specific knowledge, Miller et al. (1993) are able to improve the running speed of their GA for a 
multiple fault diagnosis problem. Najafi et al. (2009) tune population size and mutation probability real-
time for a resource investment problem.  A GA has certain parameters (e.g., population size, number of 
generations, etc.) that have to be specified.  Finding the correct combination of settings is time 
consuming, so a self adapting genetic algorithm is discussed that seeds the parameters with random levels 
and has mechanisms to adjust them during the run (Sawai and Kizu, 1998).  However, real time tuning 
takes precious CPU time away from the mechanisms in the GA that converge the solution toward optimal.   
Some research selects parameter values based solely on prior used values in research.  Ojha et al. (2009) 
uses a set value for number of generations and population size. 
 
Nagano et al. (2008) use ANOVA with six levels for population size, and after 68 combinations, find that 
their largest population size does best.  Ruiz et al. (2006) test five levels for mutation probability and four 
levels for population size for flowshop problems.  They find the best population size was the largest one.  
In our research, we analyze different parameter levels via regression to determine the parameter settings 
up front.  Multiple objectives are handled easily with GAs.  Having a single objective to solve for does 
not give the production planner much control to differentiate among many competing requirements or 
constraints.  Richter (2002) argues that the use of a multiple objective fitness function has a positive effect 
on convergence speed.  Our job shop scheduling problem involves earliness and tardiness as its two 
criteria, which are relatively comparable and competing.  A single simple genetic algorithm is flexible, 
but cannot be efficient for all problems (Leonhardi et al., 1998). The encoding scheme, operators 
(crossover, mutate, elite, etc.) and specific parameters all need to be specified for a particular class of 
problems.    
 
Problem Description 
 
In many manufacturing environments, the sequence of jobs run on a particular machine affects the setup 
time.  Job shop environments can have significant differences in setup times depending on the sequence 
of jobs run through the resources.  For example, products with significant color differences are likely run 
from lighter to darker colors with minimal cleaning, but going from a black color product to a white color 
would require much more time to prepare the machine to avoid black bleeding through and creating a 
grayish batch.   
 
In manufacturing environments a feasible solution is a must.  An optimal solution to a scheduling model 
is a goal that often cannot be obtained given data and time constraints.  However, a schedule certainly 
would benefit from having a schedule closer to optimal rather than just merely feasible.  Heuristics can 
quickly create feasible solutions, but as problem complexity increases, the solutions may be far from 
optimal.  Commonly used heuristics are Shortest Processing Time (SPT) and Earliest Due Date (EDD) 
that use a single regular measure as the criterion. We find the appropriate parameter settings for our GA 
to generate the best solutions quickly for multiple criteria.       
 
To make our job shop scheduling problems more realistic, the environment contains staggered release 
dates and recirculation in addition to sequence setup times.   Staggered release dates means that we do not 
assume all jobs are ready to start at the same time.  Recirculation is the ability of a job routing to visit the 
same machine more than once.  The job shop scheduling problems used in this paper are non-delay, 
meaning that a machine must process a job if it is available.   
 
The setup times on a machine vary according to the job family of the previously processed job on that 
machine.  A schedule is evaluated by looking at the total tardiness and total earliness.  A multiple criteria 



A. Manikas &  M. Godfrey | IJMMR ♦ Vol. 4 ♦ No. 3 ♦ 2011  
 

38 
 

objective function allows the solution result to better fit a company’s needs.  In this case, using the single 
criteria of tardiness may produce a result that has several jobs finishing very early.  Having resources 
committed to finish jobs early reduces flexibility because that capacity could be left free for future orders 
that really do need to begin processing earlier to meet their due dates.  Therefore, adding a second criteria 
to the objective function to minimize earliness gives additional weight to solutions that are closer to just 
in time.  The weight for tardiness is set to 1000 times that of earliness.  A large number was chosen 
because tardiness is, in general, much less acceptable in production than being early.  However, among 
the set of solutions with equivalent tardiness, solutions that are less early are preferred.  This rewards a 
schedule for not being tardy but also gives minor reward for being more just in time.  Adjusting the 
weights can affect the final solution generated by the genetic algorithm.  This gives flexibility for a 
production planner to adjust the weights on multiple objectives to force the genetic algorithm to find 
better solutions according to his/her criteria.    Each job’s routing is known a priori, but the operations 
sequences on the machines are unknown and have to be determined.   
 
The objective function is:  1000 * tardiness + 1*earliness.  We use just two weighted criteria (tardiness 
and earliness) here, but having many criteria has little effect on the speed of calculation because only after 
the mechanisms produce solutions are they evaluated one time according to the objective function.  The 
lower the score according to the objective function, the better the schedule solution.  For easier 
comparison between the different problems solved in this paper as well as between the different methods 
used, scores presented in the results section are expressed as a percentage of optimal.   
 
Mechanics of Genetic Algorithms 
 
The basic structure of the Genetic Algorithm is: 
Initialize 
Evaluate 
Loop for Reproduction 
 Clone Elite 
 Mutate 
 Breed Crossover 
 Replace Population with Children  
 Evaluate 
Until Termination Criteria (e.g., one minute time limit) 
 
Finding the optimal values for the GA parameters is important for making the heuristic converge to an 
optimal solution more quickly.  From our literature review, we decided to focus on seven specific 
parameters; Elite %, Mutate %, Population Size, Number of pairwise inversions for mutation, Crossover 
method, Allow crossover, and Allow mutation.  
 
Elite percent is the top percentage of the population that survives unchanged to the next generation.  This 
ensures that the best solution or solutions are always passed to the next generation.  This forces the 
algorithm to have non-decreasing solutions from generation to generation.  The larger the population size, 
the larger the number of solutions that would be considered elite.   
 
Mutate percent allows the population to achieve random differences from those that come about from 
crossbreeding alone.  Mutate percent is different from Elite percent in that an  Elite percent of 1% only 
looks at the top 1% of solutions and duplicates them, while a Mutate percent of 1% looks at every 
solution and each one has a 1%  chance of being mutated.  If selected, the solution is copied to the next 
generation and then mutated according to inversion discussed next.   
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Population size is how many solutions are in each population.  Intuitively, the more solutions in a 
population, the more likely the best one will be closer to optimal.  Number of pairwise inversions for 
mutation  specifies the probability that a solution is selected to have pairs of alleles switched.  One pair 
may be swapped for mutation, or multiple pairs for a mutated solution. 
 
Crossover method may be a one point method that takes the head of one parent and the tail of the other 
parent to create a child solution.  The other common crossover method is to intermix alleles.   We 
examine one point crossover that is at the half way point in the solution sequence, and one point chosen at 
a random distance within the sequence.   For the intermixing of alleles methods, the crossover gives each 
parent allele a 50% chance of being selected, thus forming the child solution in sequence.  The other 
intermixed method gives a higher percentage chance of selecting the more fit parent.  For example, if 
parent 1 had a score of 100 (where lower scores are better), and parent 2 had a score of 200, rather than a 
50% chance of each parent’s allele being chosen, parent 1 would have a 67% chance and parent 2 would 
have a 33% chance of its allele chosen at any point in the sequence.   
 
Crossover yes/no is a parameter that turns crossover breeding on or off.  This is used to explore the 
possibility that mutation only can produce good solutions.  If this parameter is set to off, then mutation is 
forced on.  Mutation yes/no is a parameter that allows mutation to occur or not.  This parameter is used to 
explore if mutation is needed to maintain diversity, or it can be done solely via crossover.  If mutation is 
not allowed, then crossover is forced to be on. 
 
TEST SPECIFICATION AND RESULTS 
 
Regression Model for Tests 
 
Values for the each of the seven parameters fell into certain ranges: 1) Elite Percent was in the range [1%, 
50%], and was a ceiling function.  We must have at least the single best scoring solution survive to the 
next generation; 2) Mutation Percent was in the range [1%, 50%]: 3) Population Size was in the range 
[10, 1000] increments of 10; 4) Number of Pairwise Inversions was in the range [1, 10]; 5) Crossover 
Method was equally likely to select one of four methods: One point crossover at a random location, one 
point crossover at the halfway point of the sequence, 50% likelihood of each chromosome’s allele being 
chosen when constructing a child sequence (50/50 method), and likelihood of a chromosome’s allele 
being chosen proportional to the  fitness of each parent; 6) Crossover allowed (Yes/No).  If no, mutation 
must be allowed and no parent breeding will occur and 7) Mutation allowed (Yes/No).  If no, crossover 
must be allowed and mutation percent is set to 0% and the number of pairwise inversions is set to 0. 
1000 runs of the algorithm were made with random combinations of parameters above in their respective 
given ranges.  With seven predictor variables, the regression model is a hyper plane: 
 

776655443322110 iiiiiiii XXXXXXXY ββββββββ +++++++=  
 
Interaction is assumed to not exist between these parameters, and therefore the first-order model above is 
for additive effects on mean response.   
 
Results 
 
The results of the multiple linear regression are shown in Table 1 where *** indicates p-values with 
significance of less than .01. 
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Table 1:  Multiple Linear Regression Results 
 
Adjusted R Square 0.1278  

 Coefficients 

Intercept 2641539  *** 

Elite % (1825) *** 

Mutate % (1144)   

Pairwise Int 26333  *** 

Pop Size (207) *** 

Cross Meth (28811) *** 

MutateYN (205636) *** 

CrossYN (50913)   

Examining all parameters shows that mutate percentage and turning off crossover are not statistically significant.  These seven parameters 
account for 12.78% of the variance in solution goodness.  ***, ** and * indicate significance at the 1, 5 and 10 percent levels respectively.  
 
R-Squared was 0.1339.  Adding more parameters to this model can only increase R-Squared and never 
reduce it.  Therefore, the adjusted coefficient of multiple determination adjusts R-Squared by dividing 
each sum of squares by its associated degrees of freedom.  In this case, adjusted R-Squared is 0.1278 as 
shown in Table 1.    
 
Due to the randomness inherent in the genetic algorithm, there is a wide range of values for scores.  
However, the coefficients for the four predictor variables and their associated p-values make it clear that 
there is a difference in what level each of the parameters is set to when running the genetic algorithm to 
solve this particular problem.  Using SPSS v14.0, the following results in Table 2 were obtained for 
stepwise linear regression. 
 
Table 2:  Stepwise Regression  
 

Model Summary  

Model R R Square Adjusted R Square R Square 
Change 

F Change Sig. F Change 

       

1a    0.237            0.056          0.055  0.056 59.528 0.000*** 

2b    0.317            0.100          0.098  0.044 48.749 0.000*** 

3c    0.336            0.113          0.110  0.012 13.996 0.000*** 

4d    0.351            0.123          0.120  0.010 11.686 0.001*** 

5e    0.363            0.132          0.128  0.009 10.258 0.001*** 

Five models adding in the most statistically influential parameters one at a time in a stepwise manner shows how much additional variation in 
solution goodness is modeled via the added parameters.  a.  Predictors:  (Constant), Mutate?, b. Predictors:  (Constant), Mutate?, Pop Size,  c. 

Predictors:  (Constant), Mutate?, Pop Size, Crossover Meth, d Predictors:  (Constant), Mutate?, Pop Size, Crossover Meth, Pairwise Int., 
e Predictors:  (Constant), Mutate?, Pop Size, Crossover Meth, Pairwise Int. Elite%.  ***, ** and * indicate significance at the 1, 5 and 10 percent 
levels respectively.  
 
The results above confirm the regression done in Excel 2007.  Using mutation is statistically significant, 
but what percentage chance a candidate solution had of being mutated was not significant.  Therefore, we 
set mutation percent to halfway within our range of values, i.e. 25%.   The number of pairwise inversions 
per mutation was significant; specifically, the more inversions, the worse the final solution.    Therefore, 
the number of pairwise inversions was set to one.  The next tests focused on crossover method and 
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population size only.  The results of these tests are shown in Table 3 where *** indicates p-values with 
significance of less than .01. 
 
Table 3:  Regression for Population Size and Crossover Only 
 

Adjusted R Square 0.5054  

 Coefficients 

Intercept 4,285,189 *** 

Pop Size (2.401) *** 

Cross Meth (680.07) *** 

Population size and the crossover method chosen account for 50.54% of the variation in solutions.  Furthermore, the crossover method for 
breeding has a very large, statistically significant coefficient (p-value <.01). 
 
The results shown above indicate that we can simplify the model and worry only about two parameter 
ranges (population size and the number of generations).  The programming complexity thus is reduced, 
and speed of computation improved.  We also know that increasing either of these parameter values has a 
positive effect on the Y (score reduction).   The significance is high so it is unlikely that the results seen 
are due to random variation of the data, but rather due to the change in predictor value.   Furthermore, this 
analysis is helpful because the crossover method (Cross Meth) has a coefficient of -680.065, and 
population size (Pop Size) has a coefficient of -2.401.  We can see that we get the most reduction in 
solution score by using a different crossover method for parent solution breeding.  The 50/50 crossover 
method achieved the best results in the limited time.  Population size is statistically significant in reducing 
solution scores to lower, better values.  However, the low coefficient is counterintuitive because larger 
populations in prior research where time is unconstrained improve the solution greatly.   Given the results 
of the regression, further tests were done to determine the impact of population size given the time limit.  
Without a time limit, increasing population size can produce better solutions.  However, given limited 
time, having a larger breeding population may sacrifice computation time that could be used to produce 
more generations of offspring with a smaller population size.  For population size, we tested values of 20 
to 2000 in increments of 20.  For each population size, 10 replications were done as shown in Figure 1. 
 
Figure 1:  Score per Population Size 
 

 
The graph illustrates diminishing returns in solution goodness as population size increases.  Populations increasing from 20 to 1400 show score 
improvement, while population sizes greater than 1400 have statistically insignificant improvements. 
 
There is a statistically significant difference taking into account population size 20 through 1400 (p-value 
= .0000), however, from 1400 through 2000, the p-value is .98, meaning that score improvements are 
likely random versus correlated with the population size increase.  This may be due partly to the increased 
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population size limiting the number of generations where the breeding mechanisms of the GA can 
improve the solution in the one minute time limit.   
 
IMPLICATIONS AND CONCLUSIONS 
 
Common heuristics and Genetic Algorithms can find quick, feasible solutions to job shop scheduling 
problems that involve complexities such as sequence dependent setup times, spaced release dates and 
multiple objectives.  Common heuristics run quickly, but do not converge to optimal like a GA.    Not all 
parameters for the Genetic Algorithm affect the output goodness equally.  Population size up to 1400 
improved solution goodness and using a 50/50 crossover method significantly outperformed the other 
three crossover methods explored here. 
  
Because of the speed with which the Genetic Algorithm runs, changes to customer release and due dates, 
routing changes, and order deletions and additions can be reflected in a new schedule quickly.  The results 
of this research demonstrate that good solutions can be achieved without worrying about mutation 
percentage.  It is possible to produce good results via mutation only, but superior solutions were obtained 
when 50/50 crossover was used to breed parent solutions. 
 
Future research using genetic algorithms to solve sequence dependent job shop problems likely does not 
require researchers to use Design of Experiments (DOE) or regression to determine which parameters and 
settings to use – they may use our findings directly.   
 
A limitation of this research is that it focused on Genetic Algorithms only.  A future study could examine 
the parameter effects of hybrid GAs or Scatter Search (Manikas and Chang, 2008).  Because some of the 
parameters are common amongst evolutionary algorithms, we would predict similar significant 
parameters as we found here.   A further limitation of our research is that it was used to solve sequence 
dependent job shop scheduling problems only.   Other studies that investigate parameters for other NP-
hard problems might yield different parameter settings as optimal. 
 
This Genetic Algorithm can be enhanced by adding more weighted objectives.  Resource calendars, 
alternate machines with different costs or scrap rates, learning curves on machines and other complexities 
can be added to this algorithm with relatively little additional computing power required. 
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