
International Journal of Management and Marketing Research
Vol. 8, No. 2, 2015, pp. 19-35
ISSN: 1931-0269 (print)
ISSN: 2157-0698 (online)

 www.theIBFR.com

19

DETERMINING OPTIMAL FLOW-TIME SCHEDULES

FOR THE MULTIPLE-PRODUCT BATCH-FLOW
PROBLEM

Paul Schikora, Indiana State University
Andrew Manikas, University of Louisville

Michael Godfrey, University of Wisconsin Oshkosh

ABSTRACT

We explore the problem of batch flow production scheduling on a single machine with deterministic demand
and arrivals over a finite horizon. The objective of the production system is to minimize total flow-time over
the horizon to reduce in-process inventory levels and to enable a company to compete on reduced lead-
times. Prior research has established optimal single job batch quantities. However, with multiple jobs on
the shop floor, a job may incur wait time, thus the optimal local batch size for a given job may not result in
global minimization of the total flow-time over all jobs. Our algorithm provides optimal results for batching
with different products in a capacitated production environment. Numerous recommendations for further
research are presented.

JEL: M11

KEYWORDS: Scheduling, Single Machine, Batch, Flow-Time, Lead-Time

INTRODUCTION

ast research has demonstrated the impact of production-batching (or lot-sizing) decisions have on
time-related performance measures when demand is deterministic, but batch sizes are flexible. One
area of this research looks at batching jobs together for processing (e.g., Baptiste, 2000; Coffman,

Yannakakis, Magazine, & Santos, 1990; Logendran, Carson, & Hanson, 2005; Chen, Du, & Huang, 2011;
Logendran, deSzoeke, & Barnard, 2006, Ng, Cheng, & Kovalyov, 2003; Van Der Zee, 2007). A second,
related, area of research looks at breaking a job into batches, i.e., batching products on a single machine
along with the resultant effect on flow-times. Santos and Magazine (1985), Dobson, Karmarkar, and
Rummel (1987), and Naddef and Santos (1988) studied the subject of batching to minimize flow-times on
a single machine. Potts and Van Wassenhove (1992) used the term “lot-sizing” to refer to the decision on
how to break a given job into smaller batches. A sub-topic of each of these papers involved determining
and scheduling production batches when completed products are not available for movement until all items
in a batch are complete. This situation was referred to as the batch-flow (BF) problem. All of these papers
showed that the single-product batch-flow problem could be solved optimally.

Later, Shallcross (1992) presented a more efficient algorithm for solving the single-product batch-flow
problem. Then, Mosheiov, Oron, and Ritov (2005) presented an integer solution to the single-product batch-
flow problem. Yang (2009) extended the single-product case to include learning effects using a forward
dynamic programming algorithm. Bukchin, Tzur, and Jaffe (2002) extended the single-product case for a
two-machine environment. Dobson et al. (1987) explored sequencing batches to minimize flow-time on a
single machine. They investigated three scenarios: 1) the item-flow problem where transfer batches may be
of size one only, 2) a batch-flow problem for a single product where transfer batches are the same size as

P

P. Schikora et al | IJMMR ♦ Vol. 8 ♦ No. 2 ♦ 2015

20

processing batches, and 3) a batch-flow problem for multiple products with processing and transfer batches
the same size. They assumed that all setups performed before processing parts are independent of the prior
part type processed (sequence-independent). They used a simple index rule for the item-flow problem.
Because transfer b atches of size one are an inefficient use of resources, the authors looked at two variations
of batch-flow problems where transfer batches were the same size as processing batches were. For the
single product batch-flow problem, they assumed a setup time before each batch and found the optimal
batch quantities to process. This single product formulation, although not very useful in realistic multi-
product production environments, did allow insights into batch sizing and sequencing to be used for the
multiple-product case. Finally, Dobson et al. (1987) solved the optimal number of batches and the quantities
in those batches. They suggested using heuristics to make local batch improvements, but did not remove
batches explicitly from the production sequence to reduce the total flow-time for all jobs.

The previous research has been limited in that the more difficult multiple-product case (with jobs consisting
of different products with different unit processing and setup times) has not been solved optimally in any
of the papers, though heuristics have been presented (e.g., Dobson et al., 1987). In addition, the previous
research assumed that all jobs would be available for processing at time zero. Although providing essential
insight into the batch-flow problem, the previous research left unexplored the more realistic issue of
multiple jobs with non-zero release dates (or times within a day) over a finite time horizon. When analyzing
production capacity over a finite horizon, applying the scheduling formulas from the earlier papers may
result in wait times for arriving jobs. These wait times, in turn, would increase total flow-time over all of
the jobs; therefore, different scheduling methods must be not applied.

We investigate how to achieve optimal flow-time schedules in this complex environment. We extend and
expand upon the prior work of Dobson et al. (1987) by looking at the most difficult, and realistic, scenario
– the multiple-product batch flow problem. We illustrate how scheduling issues may result when using the
optimal batch sizes calculated in prior research. Those batches are optimal only if no subsequent jobs are
ready to be processed until after the first job is finished completely. However, if jobs are ready and waiting,
we want to provide guidance on how to determine whether reducing the number of batches (effectively by
removing setups on earlier jobs) could reduce wait time of later jobs, thus resulting in global flow-time
reduction. To provide fuller coverage of potential scenarios that a scheduler may encounter, we show how
to process batches of identical size, discrete batch quantities, and jobs where batches are not allowed to be
commingled (e.g., government materials). We examine scenarios where all jobs are released at time zero
(as in Dobson et al. (1987) and with spaced inter-arrival times. We also extend the commingled batches in
Dobson et al. (1987) to solve the situation where products must be kept segregated throughout processing.
We develop an algorithm to sequence work optimally under all of these scenarios. We simulate diverse
production environments to demonstrate that our proposed method does, indeed, outperform the prior
methods presented in the literature.

The use of different scheduling methods is an important area to investigate further because inventory and
throughput are related to scheduling decisions. Little’s Law states that flow-time equals inventory divided
by throughput. If we can reduce flow-time over the horizon, we are able either to lower average inventory
on hand or to increase throughput (parts produced by time), or both. Having inventory in the form of raw
materials or work in process is money tied up that needs to be borrowed. Alternatively, inventory incurs an
opportunity cost. Throughput is the rate that the system makes money. If throughput were increased, we
would be able to produce value-added products more quickly; thus, we could sell them sooner and be better
off financially according to the time value of money. Being able to use the same machine to process all
products required, but more quickly, could reduce money tied up in inventory, and increase customer
service levels and revenue. The remainder of this paper is organized as follows. The next section provides
a literature review of the batch-flow problem structure and the results of prior research for the single-
machine case. Next, we present the data and the methodology used to study the specific batch-flow problem

INTERNATIONAL JOURNAL OF MANAGEMENT AND MARKETING RESEARCH ♦VOLUME 8 ♦NUMBER 2 ♦2015

21

formulation examined in our paper. The subsequent section discusses the results from implementing our
proposed algorithm. The paper closes with concluding comments.

LITERATURE REVIEW

The issue examined in our paper is a single-machine production loading and scheduling problem with
deterministic system parameters. The single-machine problem is well researched and best presented by
Dobson et al. (1987). In their model, they assumed that a known quantity of items is available for processing
at a machine. This quantity is to be divided into batches for producing and transferring the items from the
machine. After a batch is completed, it is removed from the machine and available for movement. The next
batch then can be started. In this formulation, production batches and transfer batches are the same size.
Because of the time required to move the completed products off the machine, each batch incurs a transfer
time to remove the batch and to transfer it to the next work center, during which the machine is non-
productive and not available to process the next batch. Using the terminology of Cheng, Mukherjee, and
Sarin (2013), this transfer and removal time would have the same effect on flow-time that a sublot-attached
setup would have. One example in which process and transfer batches are equal is found in shops where
movement of batches between machines might be accomplished using containers such as pallets or carts
(Webster & Baker, 1995). A second example provided by Coffman et al. (1990) considered pick and place
machines loaded with chips of various sizes that are inserted into circuit boards. Upon completion, each
circuit board is loaded onto a cart by the operator of the pick and place machine. Then, the operator of the
pick and place machine periodically stops production and moves the cart to a soldering machine. Our
research focuses on the single machine problem, with n jobs in an over-capacitated situation for both the
single-product and the multiple-product cases. The formulation used in this paper for the single-product
case follows:

i = the number of batches of a product in a job.
d = the number of items in a job.
p = the unit processing time for each unit in a job.
s = the removal and transfer time for each batch of a job. Alternatively, this term may be used for setup
time before running an individual batch.
M = an upper bound on the number of batches for a job.

If iq = quantity of items processed in batch i, the batch-flow problem for the single-product case [BF1] can
be formulated as:

∑ ∑
= =

+
M

i

i

k
ki pqsq

1 1
)(min (1)

∑
=

=
M

i
i dq

1

 (2)

 Where Miqi ,..,1,0 =≥

Dobson et al. (1987) showed that the optimal number of batches (*k) to solve [BF1] is found using the
following:

−+=

2
12

4
1*

s
dpk (3)

P. Schikora et al | IJMMR ♦ Vol. 8 ♦ No. 2 ♦ 2015

22

The optimal size of each batch (*
iq) is found using the modified formula in the second heuristic from

Dobson et al. (1987). This modification is used such that the optimal number of batches from (3) could be
used (*' kk =), or any 'k less than *k could be used to produce fewer batches at the expense of increased
job flow-time.

',..,1,
2

1* kik
p
s

k
dq i

i

i
i =

 −

+= (4)

In (4), id is the demand remaining after i – 1 batches have been scheduled,)1(' −−= ikki and the quantity

for batch i =)0,max(*
iq to ensure positive quantity values. The batches per job are scheduled in non-

increasing order. This ordering of batches may seem contrary to traditional scheduling methods based on
the shortest processing time (SPT) concept, where the smallest processing time requirements are handled
first. However, it does follow that when demand is heavy at a machine, larger batches should be produced
first to decrease the size of the queue rapidly. As demand lessens, batch sizes could be decreased to
concentrate more on individual item flow. These quantities produced from (4) also are supported by the
findings of papers on the repetitive lots concept (Jacobs & Bragg, 1988) and lot streaming (Cheng et al.,
2013; Kalir & Sarin, 2000; Ramasesh, Fu, Fong, & Hayya, 2000, Glass & Possani, 2011). Figure 1
illustrates the batching structure created by (3) and (4). The notation bij in Figure 1 represents the ith batch
in job j. For ease of understanding, we have used s1 to represent the setup time before running each batch
of product 1 and s2 to represent the setup time before running each batch of product 2 However, the s terms
may represent transfer times between operations in many businesses. The job arrival time is represented
by aj and the job processing start time is represented by σj.

Figure 1: Two-Job Schedule without Capacity Issues

This figure shows two jobs—Jobs 1 and 2. Job 1 is broken down into Batches 1, 2, and 3. Before each batch in Job 1 is run, a setup occurs.
Job 2 is broken down into Batches 1 and 2. Before each batch in Job 2 is run, a setup occurs. As shown above, Batch 3 of Job 1 would be completed
before Job 2 arrives. Hence, Job 2 would not incur wait time.

The batch flow-time is found by multiplying the quantity in each batch by the batch completion time. The
total flow-time for a job is the sum of all batch flow-times using (1). Though Dobson et al. (1987) focused
on choosing both the optimal number of batches and the batch sizes, (4) also could provide the optimal
batch sizes given any value of k to which one might be restricted. If, for some reason, the scheduler were
limited to breaking the processing requirement into a non-optimal number of batches (i.e., 'k), the optimal
batch sizes could be found by applying Equation (4) repetitively. For illustration, assume that job 1 arrives
at time 0, with demand (d) of 21 units, batch setup time (s) of 25, and processing time per unit (p) of 5.
From (3), the value of 2.44 would have a ceiling function applied, setting the optimal number of batches (

*k) to 3. We would set 'k to our optimal *k initially to compute the job flow-time. We then would use
Equation (4) three times (i = 1, 2, 3) to calculate the appropriate batch quantities, as follows:

Step 1: Demand Remaining = 21 & Batch Quantity = 12.
Step 2: Demand Remaining = 9 & Batch Quantity = 7.

b11 s 1 b12 s
1 b13 s

1

time

b21 s
2 b22 s 2

0 a2=σ2

INTERNATIONAL JOURNAL OF MANAGEMENT AND MARKETING RESEARCH ♦VOLUME 8 ♦NUMBER 2 ♦2015

23

Step 3: Demand Remaining = 2 & Batch Quantity = 2.

Identical Batch Sizes

Dobson et al. (1987) also assumed that the scheduler is free to select arbitrary sizes for the different batches.
Realistically, however, a scheduler might be limited to scheduling batches of as nearly identical size as
possible. In that case, it can be shown that the optimal number of batches **k is found by:

=

s
dpk 2** (5)

The optimal batch sizes (**q) all are set initially at:

= **

**

k
dq (6)

The remaining x units would be assigned one each to the first x batches. For example, if d = 75, p = 1, and
s = 2, then 3,9,8 **** === xqk . The resultant batch sizes would be 10, 10, 10, 9, 9, 9, 9, and 9, with a
total flow-time of 3,825.

Discrete Batch Sizes

Often, batch sizes calculated from (4) are non-integer. For discrete products, the quantities could be
modified according to Mosheiov, Oron, and Ritov (2005) and Mosheiov and Oron (2008). For example, we
could revisit our original example with job 1 with demand (d) of 21 units, setup time (s) of 25, and
processing time per unit (p) of 4 (rather than 5). From (3), the optimal number of batches (k*) would equal
3. We would set k’ to our optimal k* to compute the flow-time. Again, we would use (4) to calculate the
appropriate continuous batch quantities. Next, the fractional units would be calculated as ii qq − . We
then would use (7) to find the sum of fractional units to determine the number of batches (B) to round up
to integer values.

 ()∑
=

−=
*

1

k

i
ii qqB (7)

The B batches with the highest fractional portions would have a ceiling function applied. Next, the
remaining (Bk −') batches would have a floor function applied. In the case where more than one batch
had the same highest fractional portion, the ceiling function would be applied to the earliest of those batches.
For our example, B =1 ([13.25 – 13] + [7 – 7] + [.75 – 0]). Batch 3 has the highest fractional portion of .75,
so a ceiling function would be applied to make it a quantity of 1. The remaining two batches (1 & 2) would
have a floor function applied to their quantities. The integer batches that produce the optimal flow-time for
this job would be 13, 7, and 1 (as shown in Table 1). Note: For integer batches, it is theoretically possible
to have a tie with other batch quantity values for minimum flow-time.

P. Schikora et al | IJMMR ♦ Vol. 8 ♦ No. 2 ♦ 2015

24

Table 1: Converting Fractional Batch Quantities to Integer Values

i Demand
Remaining

Batch Quantity
qi

Fractional
Value

Integer qi

1 21 13.25 0.25 13
2 7.75 7 0 7
3 0.75 0.75 0.75 1

This table shows how to convert fractional batch quantities to integer values. We use the demand remaining in
Equation (4) to calculate the continuous batch quantities. Next, we determine the fractional value for each batch.
After that, we use Equation (7) to determine the number of batches to round up to integer values. Given that B = 1,
we search for the one batch with the highest fractional value (Batch 1) and round its quantity up to an integer value.
Then, we round down the quantities for the remaining batches with fractional values.

DATA AND METHODOLOGY

Problem Formulation

Dobson et al. (1987) provided many important results, including optimal formulas for the single-product
batch-flow problem. However, they did not address how production capacity limits could affect multiple-
product batching decisions and the resultant flow-time over a finite horizon. Also, they assumed that items
arrive in groups for processing (hereafter, these groups are referred to as "jobs"), with the first job ready at
time zero and the remaining jobs ready at known arrival points in the future. Finally, they did not provide
guidance on how to sequence jobs when multiple jobs are ready to be processed at the same time. We fill
in these gaps with our proposed model. To demonstrate the impact of capacity constraints, consider the
two-job example in Figure 2, where each job is represented by a horizontal bar, with the length of the bar
representing the processing time requirement of the job. Clearly, if all the jobs could be batched individually
and processed completely before the next job arrival, then (3) would suffice to calculate the number of
batches per job. However, consider when the processing time requirement of all the jobs approaches
capacity over the horizon (or a portion of it). In that case, breaking up the jobs into batches, with the
additional setup time required for each batch, may induce wait times for later jobs. For example, assume
that job 2 arrives before the last batch of job 1 finishes.

Figure 2: Two-Job Schedule—Job 2 Arrives before Job 1 Finishes

This figure shows two jobs—Jobs 1 and 2. Job 1 is broken down into Batches 1, 2, and 3. Before each batch in Job 1 is run,
a setup occurs. Job 2 is broken down into Batches 1 and 2. Before each batch in Job 2 is run, a setup occurs. As shown above,
Batch 3 of Job 1 would not be completed before Job 2 arrives. Hence, Job 2 would incur wait time.

Because waiting time (denoted jω for job j) would increase the flow-time for a job, applying Equation (3)
to determine the number of batches for each job in isolation may not result in minimum total flow-time
over all of the jobs in the schedule. In that case, another method must be found to minimize total flow-time
across all jobs. In this problem, multiple jobs are scheduled to arrive over a finite horizon at a single machine
for processing. Each job contains multiple identical items, and different jobs may contain different products
with unique processing and transfer times. Processing time requirements for the jobs are approaching, or
exceeding, capacity over the horizon. The jobs are to be processed in a batch-flow method, i.e., no items in
a batch are ready for movement until the last item in the batch is complete. The scheduler is free to choose
the number and the size of batches for each job, and the objective is to minimize total flow-time over all

s

1
s

1 s
1

b11 b12 b13

time

b21 s
2

b22 s
2

ω
2

0
2 a

2 σ

INTERNATIONAL JOURNAL OF MANAGEMENT AND MARKETING RESEARCH ♦VOLUME 8 ♦NUMBER 2 ♦2015

25

jobs over the time horizon. Other assumptions of the model include the following: Job and machine
characteristics are not alterable in the short term (i.e., there is no way to increase the machine capacities or
to reduce product setup times, etc.). For notation, time zero is indexed at the arrival of the first job. Let
there be n jobs to schedule for processing. Let j = 1,…, n index the jobs in the order of their arrival. Let jk
be the number of batches that job j is broken into, and jki ,..,1= index the batches for job j in processing
order. Also, let qij = the quantity processed in the ith batch of job j, σij = the start time of the ith batch of job
j, and τj = the completion time of job j. Assume that the following are known and fixed:

dj = the number of units in job j.
pj = the unit processing time for each unit of job j.
sj = the transfer time (or setup time) of a batch of job j.
aj = the arrival time of job j, measured from time zero.

The multiple-product problem now can be written as:

()[]∑∑ ∑
= = =

 ++−
n

j

k

i

i

m
jjmjjjij

j

spqaq
1 1 1

1 **min σ (8)

 s. t.

∑
=

=
jk

i
jij dq

1
 (9)

() ()jjjjjj skpd **1 ++= στ (10)
011 =σ (11)

1],,max[11 >= − ja jjj τσ (12)

()[] 1,*
1

1
1 >++= ∑

−

=

ispq
jk

m
jjmjjij σσ (13)

jiqij ,,0 ∀> (14)

The first constraint ensures that all items are processed. The next four constraints ensure proper job start
times based on processing precedence. The definition of jτ is provided to simplify notation. The next
section presents an algorithm developed to solve this problem. This algorithm is built upon the optimality
properties of Equations (3) and (4) extended to the multiple-product problem. First, the logic behind the
algorithm is explained, followed by a brief discussion of relaxation of the arrival/waiting constraint. Next,
the algorithm is formally stated.

Multiple-Product Algorithm

Given that Equations (3) and (4) provide the optimal continuous batches for the single-product
unconstrained problem, the results from Dobson et al. (1987) provide a good starting point for solving the
multiple-product problem. First, consider the two-job problem illustrated in Figure 2. Given any start time
for each job, the batches shown (assumed to be calculated from Equation (4)) would minimize each job's
individual flow-time. Given that, it is obvious that the only way to reduce flow-time further would be to
reduce the wait time for the second job (222 a−= σω). Because job 2 cannot start until job 1 is completed,
the only way to reduce the wait time for job 2 would be to reduce the makespan of job 1, thereby allowing
job 2 to start earlier than currently scheduled. The current makespan of job 1 is () 111 3* spd + . The

P. Schikora et al | IJMMR ♦ Vol. 8 ♦ No. 2 ♦ 2015

26

processing time required by job 1 cannot be changed; however, the total transfer time associated with job
1 could be reduced by reducing the number of batches in job 1 (1k). Each reduction in 1k would reduce the
total transfer time of job 1 and the makespan of job 1 by . If a batch were removed from job 1, its flow-
time normally would increase. Note: Because this is a discrete schedule, reducing the number of batches
by one from the computed optimal value occasionally could result in no change in flow-time. For example,
assume that job 1 in the two-job problem represented in Figure 2 is rescheduled into two batches, thus
removing a batch from job 1. The revised schedule is depicted in Figure 3. Decreasing the number of batches
in job 1 is not optimal for that job (i.e., removing a batch increases the flow-time for job 1). However, the
resultant reduction in transfer time decreases the wait time for job 2, reducing the total flow-time of job 2,
which in turn, may reduce the total flow-time over all jobs. In this example, job 2 can start immediately
when it arrives (σ2=a2) after the re-batching of job 1.

Figure 3: Reduction of k for Job 1 Eliminates Wait Time for Job 2

This figure shows two jobs—Jobs 1 and 2. Job 1 now is broken down into fewer batches—Batches 1 & 2. Before each batch in Job 1 is
run, a setup occurs. Job 2 still is broken down into Batches 1 and 2. Before each batch in Job 2 is run, a setup occurs. As shown above,
Batch 2 of Job 1 now will be completed before Job 2 arrives. Hence, Job 2 will no longer incur wait time.

Generally, as a function of kj, optimal job flow-time is convex, increasing left of k* from Equation (3).
However, 2ω will decrease by },min{ 122 sωδ = , and the flow-time for job 2 will decrease by 22 * dδ .
If a reduction in k1 results in a net increase in total flow-time for all jobs, there is no way to reduce total
flow-time, and the current schedule is optimal. However, if a reduction in 1k results in a net decrease in
total flow-time over all jobs, this change should be made. In that case, job 1 would be rescheduled using
(4) with 1*

11 −= kk . If 2ω were still positive, the rescheduling process would repeat as long as it results in
a decrease in total flow-time, setting ykk −= *

11 , where y is the number of batches removed from job 1.
When 1,0 12 == kω , or a reduction in 1k results in an increase in total flow-time, the process stops, and
the current schedule is optimal. The same logic could be extended to problems with more than two jobs.
Figure 4 shows an example four-job problem where the wait time of jobs 2, 3, and 4 may be reduced by
removing a batch from job 1.

For further illustration, assume a schedule with two jobs. Job 1 has d = 200, p = 25, s = 100 and arrival time
by default set at t = 0. Job 2 has d = 100, p = 1, s = 100, arrival time t = 2,000. Using (3) and (4), we
calculate the optimal number of batches and their respective quantities. In this example, 𝑘𝑘1∗ = 10, 𝑘𝑘2∗ = 1,
σ2 = 5,000, and ω2 = 3,000. From this, we can produce the data in Table 3, shown in Figure 5. The two
lemmas below are demonstrated in Figure 5.

Lemma 1: Flow-time for downstream jobs may decrease linearly if wait time is reduced by eliminating
batches from an upstream job. Eliminating yj batches from the calculated k* in Equation (3) for an upstream
job j can decrease the flow-time of downstream jobs. Let this reduction of flow-time for downstream jobs
from job j be represented by y

jr , with an upper limit of:

∑ +=+=
n

jm mjjj
y
j dsywr

11 *)*,min(ˆ (15)

1s

b11 b12

time

b21 s
2

b22 s
2

0

s1
s

1

 2 a2 =σ

INTERNATIONAL JOURNAL OF MANAGEMENT AND MARKETING RESEARCH ♦VOLUME 8 ♦NUMBER 2 ♦2015

27

Figure 4: Representative Four-Job Schedule

This figure shows four jobs broken into batches deemed optimal given prior research methods. However, as scheduled, Jobs 2, 3, and 4
incur wait time, which may increase the total flow-time. We propose that reducing the number of batches (setups) in upstream
(earlier) jobs may decrease the total flow-time over all jobs.

The actual value of 𝑟𝑟𝑗𝑗

𝑦𝑦depends on the structure of any specific problem and can be found from the resultant
batch schedule for any value of y. As a function of y, 𝑟𝑟𝑗𝑗

𝑦𝑦 is stepwise linear, non-decreasing from y = 1 to
𝑘𝑘𝑗𝑗∗ - 1. Its value would be calculated for increasing values of yj (# of batches removed from job j). Removing
a batch from an upstream job j may remove min{sj, ωj+1} from downstream jobs. Flow-time reduction for
downstream jobs is the wait time removed per job multiplied by the demand (number of units) for that job.
As long as there is remaining wait time for job j + 1, removing more batches from job j (increasing yj) can
reduce flow-time of the downstream jobs. The two-job example presented above is used to show this flow-
time reduction of a downstream job in Table 2 and Figure 5, where the x-axis is the number of batches
removed (y1) from the 𝑘𝑘1

∗ calculated in (3) for job 1. The line labeled “Incremental r” on the graph in Figure
5 shows the incremental reduction in flow-time for job 2 from removing the yth batch from job 1 (𝑟𝑟1

𝑦𝑦 −
𝑟𝑟1
𝑦𝑦−1). This equals zero for y = 0 and any value of y for which there is no reduction in ω2 . However, in this

example, job 2 still would incur waiting time even if we removed all nine batches possible (recall that 𝑘𝑘1∗ =
10) from job 1.

Table 2: Batch Scheduling Results from Example Problem

This table shows a numerical example with two jobs, each job’s local (individual) flow-time, and total flow-time over all jobs after removing y
setups from job 1. The cumulative increase in the local flow-time of job 1 due to removing setups (i.e., decreasing the number of batches from the
optimal) is shown as g. The corresponding cumulative reduction in local flow-time for all downstream batches (job 2) is shown as r. The last two
columns show the incremental effect on the g and r terms due to removing one more setup (batch) from job 1.

Lemma 2: Flow-time for a given job increases geometrically with the number of batches eliminated from
the optimal k for that job as determined with (3). Removing batches for job j increases the flow-time for
job j by delaying the completion of the original quantities of the kj

* - y batches. Let y
ijz denote the

incremental batch quantity for batch i on job j after reducing the number of batches by y (i.e., y
ijz is the

y k1 Job 1
Total Flow

Job 2
Total Flow

Job Set
Total Flow

𝒈𝒈𝟏𝟏
𝒚𝒚 𝒓𝒓𝟏𝟏

𝒚𝒚 𝒈𝒈𝟏𝟏
𝒚𝒚 − 𝒈𝒈𝟏𝟏

𝒚𝒚−𝟏𝟏 𝒓𝒓𝟏𝟏
𝒚𝒚 − 𝒓𝒓𝟏𝟏

𝒚𝒚−𝟏𝟏

0 10 643,500 620,000 1,263,500 0 0 0 0
1 9 643,575 610,000 1,253,575 75 10,000 75 10,000
2 8 644,100 600,000 1,244,100 600 20,000 525 10,000
3 7 645,850 590,000 1,235,850 2,350 30,000 1,750 10,000
4 6 649,850 580,000 1,229,850 6,350 40,000 4,000 10,000
5 5 658,000 570,000 1,228,000 14,500 50,000 8,150 10,000
6 4 674,000 560,000 1,234,000 30,500 60,000 16,000 10,000
7 3 706,275 550,000 1,256,275 62,775 70,000 32,275 10,000
8 2 779,900 540,000 1,319,900 136,400 80,000 73,625 10,000
9 1 1,020,000 530,000 1,550,000 376,500 90,000 240,100 10,000

b11 b12

time

b21 s2

b32 s3

ω 2

b31 s3 ω 3 b33

b41 s4 ω 4

0 2 a 2 σ
3

a
3

σ
4

a
4

σ

s1

s3

s1

P. Schikora et al | IJMMR ♦ Vol. 8 ♦ No. 2 ♦ 2015

28

quantity increase to batch i of job j as the total demand needs to be satisfied using fewer batches (y
jk) than

the optimal(𝑘𝑘𝑗𝑗∗)). Let ykk j
y
j −= * , and ijq denote the original batch quantities for the *

jk batches as
determined by (3) and (4). For job j, the increase in flow-time (𝑔𝑔𝑗𝑗

𝑦𝑦) is given by Equation (16). Equation
(16) follows from algebraic manipulation of the flow-times with y

jk batches minus the flow-time with *
jk

batches.

𝑔𝑔𝑗𝑗
𝑦𝑦 = ∑ �𝑞𝑞𝑖𝑖𝑗𝑗 ∗ 𝑝𝑝𝑗𝑗 ∗ ∑ 𝑧𝑧𝑥𝑥𝑗𝑗

𝑦𝑦𝑖𝑖
𝑥𝑥=1 �

𝑘𝑘𝑗𝑗
𝑦𝑦

𝑖𝑖=1 − ∑ �𝑞𝑞𝑖𝑖𝑗𝑗 ∗ ∑ ��𝑞𝑞𝑥𝑥𝑗𝑗 ∗ 𝑝𝑝𝑗𝑗� + 𝑠𝑠𝑗𝑗�𝑖𝑖
𝑥𝑥=1 �

𝑘𝑘𝑗𝑗
∗

𝑖𝑖=𝑘𝑘𝑗𝑗
𝑦𝑦+1

+∑ �𝑧𝑧𝑖𝑖𝑗𝑗
𝑦𝑦 ∗ ∑ ���𝑧𝑧𝑥𝑥𝑗𝑗

𝑦𝑦 +𝑖𝑖
𝑥𝑥=1

𝑘𝑘𝑗𝑗
𝑦𝑦

𝑖𝑖=1

𝑞𝑞𝑥𝑥𝑗𝑗� ∗ 𝑝𝑝𝑗𝑗� + 𝑠𝑠𝑗𝑗�� (16)

Figure 5: Net Change in Flow-Time as Batches Are Removed

This figure shows the individual effects of local flow-time for job 1 increasing (incremental g), flow-time of downstream jobs decreasing
(incremental r), and the combined total flow-time net result. As long as the slope of the total flow-time is negative, removing a batch (and its setup)
from an upstream job results in a net reduction in total flow-time over all jobs.

From Equation (4), batch quantities increase for remaining batches of a given job when its k is reduced. In
addition, as the number of batches removed (y) increases, y

ijz increases at an increasing rate for the

remaining batches. The first term in Equation (16) is the incremental additional flow-time for the first y
jk

batch’s original quantities caused by waiting for the additional processing time of their increased batch
sizes (z increments). The second term is the removal of flow-time from the original last y batches because
we are no longer using *

jk batches, but rather are using y
jk = yk j −* batches. The final term adds back the

flow-time for the additional y
ijz units to be processed in each of the new y

jk batches. The incremental effect
of Equation (16) is shown in Figure 5. The line labeled “Incremental g” shows the incremental increase in
the flow-time of job 1 by removing the yth batch from job 1 (𝑔𝑔1

𝑦𝑦 − 𝑔𝑔1
𝑦𝑦−1). By comparing both incremental

lines, we can see how large y should be to minimize total flow-time. As long as the incremental r is greater

1100000

1150000

1200000

1250000

1300000

1350000

1400000

0

20000

40000

60000

80000

100000

120000

140000

0 1 2 3 4 5 6 7 8 9

To
ta

l F
lo

w
-T

im
e

In
cr

em
en

ta
l g

, r

Number of Batches Removed from Job 1 (y1)

Incremental g

Incremental r

Total Flow
Time

INTERNATIONAL JOURNAL OF MANAGEMENT AND MARKETING RESEARCH ♦VOLUME 8 ♦NUMBER 2 ♦2015

29

than the incremental g for a particular value of y, removing the yth batch will reduce total flow-time for the
entire schedule. Similar logic to that shown above for n = 2 can be applied to scheduling a multiple-product
problem with n > 2. Consider the representative batch schedule shown in Figure 4 (n = 4), and assume the
batches shown are optimal for each individual job. Because there is wait time for jobs 2 through 4,
reductions in 21 , kk or 3k will decrease the flow-time of the respective downstream job(s). Given this
starting schedule, reducing 1k will provide the greatest decrease in downstream flow-time. As 1k is
decreased, it eventually will stop being the best candidate for reduction as 2ω is eliminated or the increase
in flow-time for job 1 becomes so large that another 𝑘𝑘𝑗𝑗 becomes the better choice for reduction. As long as
at least one jω remains positive, there is a potential for benefit from reducing an appropriate 1−jk . For any

0=jω , there will be no possible benefit from reducing 1−jk .

Proposition 1: After y

jk is found for any job j such that the net total flow-time of all jobs does not decrease,

further reductions in y
jk can only further increase total flow-time.

Proof: Let 'y

jk be the first number of batches evaluated (smallest y) where the total flow-time of all jobs
does not decrease. This means the incremental increase in 𝑔𝑔𝑗𝑗

𝑦𝑦 is no longer fully offset by the incremental
increase in 𝑟𝑟𝑗𝑗

𝑦𝑦 . From Lemma 1, y
jr increases linearly, and from Lemma 2, 𝑔𝑔𝑗𝑗

𝑦𝑦 increases geometrically as
y
jk is decreased from 𝑘𝑘𝑗𝑗∗. Therefore, no number of batches less than 'y

jk can further decrease total flow-
time. By evaluating these net total flow-time trade-offs, an improved final solution could be found from
the original one shown in Figure 4. Proposition 1 allows us to specify our algorithm. A logical method of
evaluating and choosing reductions in jk is presented in §4.3.

Discussion on Relaxation of Arrival Times

In the current model, jobs are processed in the order of their arrival. However, which job should be selected
if two jobs are waiting at the completion of the current job, or arrive at the same time?

Proposition 2: If two jobs are ready at the same time, then if)()(2222111112 dpskddpskd +>+ , schedule
job 2 first. Otherwise, schedule job 1 first.

Proof: The proof follows from algebraic manipulation of the flow-times of the two cases:

)()(22221111211111 dpskdpskddpskdA +++++= when job 1 is processed before job 2, and

)()(22221111122222 dpskdpskddpskdB +++++= when job 2 is processed before job 1. Comparing
A with B and simplifying leaves the inequality)()(2222111112 dpskddpskd +>+ to indicate that job 2
should proceed before job 1 to minimize total flow-time.

Similarly, for m jobs waiting to be processed on the machine, the job j with the highest value of

jimjidpskddpskd jjjjiiiiij ≠=+−+ ,,..,1,),()(, is processed first to minimize the total flow-time
equations over all jobs competing for the same capacity. Similarly, for the remaining m-1 jobs, the next
highest value of jimjidpskddpskd jjjjiiiiij ≠−=+−+ ,1,..,1,),()(is then processed, with repeated
application of that equation until there is only one job left to sequence.

P. Schikora et al | IJMMR ♦ Vol. 8 ♦ No. 2 ♦ 2015

30

Algorithm Statement

Because total flow-time is a function of jk (the only variable in the problem), a simple type of search
method (i.e., marginal analysis) was chosen to drive the multiple-product algorithm. The starting point for
the algorithm is the solution where the number of batches for each job (jk) is set at the optimal level (*

jk)
determined from Equation (3) from Dobson et al. (1987) for a single job. Next, each job is analyzed
(beginning with job 1), subtracting one batch at a time until there is no more reduction in total flow-time,
there is no more wait time in the system, or jk has been set to one batch. This algorithm is applied to the
first n – 1 jobs. From Proposition 1, we can set a general upper bound on the number of iterations of the
algorithm until the optimal solution is achieved.

∑
−

=

=
1

1

*
n

j
jkU (17)

Algorithm Steps

Calculate 𝑘𝑘𝑗𝑗∗and 𝑞𝑞𝑖𝑖𝑗𝑗∗ for each of the j = 1,…, n jobs using (3) and (4)

Set 𝑘𝑘𝑗𝑗 = 𝑘𝑘𝑗𝑗∗ for all 𝑗𝑗
Set 𝑗𝑗 = 1
Set 𝑟𝑟𝑗𝑗0 = 𝑔𝑔𝑗𝑗0 = 0
For each job j, j = 1, …, n-1
 For y = 1 to 𝑘𝑘𝑗𝑗∗ − 1

Calculate batch sizes from (4) and resultant schedule

Calculate 𝑔𝑔𝑗𝑗

𝑦𝑦 and 𝑟𝑟𝑗𝑗
𝑦𝑦

 If 𝑔𝑔𝑗𝑗
𝑦𝑦 − 𝑔𝑔𝑗𝑗

𝑦𝑦−1 > 𝑟𝑟𝑗𝑗
𝑦𝑦 − 𝑟𝑟𝑗𝑗

𝑦𝑦−1 , then exit loop, ‘no more reductions
possible’
 Set 𝑘𝑘𝑗𝑗 = 𝑘𝑘𝑗𝑗

𝑦𝑦
Next y

Next job j

Although our proposed algorithm analyzes jobs in sequential order, this is not necessary to achieve the
optimal flow-time in a fixed number of iterations (as bounded by Equation (17)). Figure 6 shows a four-job
example, with the first three jobs ready to process at the same time and the fourth job released later (thus
always scheduled last). The figure shows the effect on total flow-time by applying the algorithm to reduce
setups on the first three jobs for three different sequences. The x-axis specifies the number of batches
removed from the original 1,...,1,* −= njk j , batches calculated using Equation (3). Although not drawn
in the figure (for readability, only three sequences are shown), investigating all six possible sequences of
the first three jobs for setup reduction has the same final flow-time effect. Therefore, the order in which
jobs are investigated with our formulae does not affect attainment of the optimal flow-time. The next
section describes the experimental design. This is followed by a section that re-examines the commingled
batches all arriving at time 0, as done in Dobson et al. (1987). The final sections are our conclusions and
recommendations for further research.

INTERNATIONAL JOURNAL OF MANAGEMENT AND MARKETING RESEARCH ♦VOLUME 8 ♦NUMBER 2 ♦2015

31

Experimental Design

To test the effectiveness of the multiple-product algorithm for the case where commingling of products is
not allowed, the following experimental factors were considered:

Number of problems: 1,000
Number of jobs/products per problem: Randomly generated as U(2, 100)
Number of units in a job (demand): U(1, 1,000)
Unit processing time for each unit of a job: U(1, 50) minutes
Transfer time for a batch within a job: U(1, 100) minutes
Inter-arrival times between jobs: U(1, 1,000) minutes.

Figure 6: Flow-Time Reduction Per Iteration For Various Job Sequences (Four-Job Scenario)

This figure shows an example with three jobs available for processing at the same time, with a fourth job arriving later. If when using Equations
(15) and (16) we determine that removing a batch setup from an upstream job results in a net reduction in total flow-time, that setup should be
removed. The three lines in the figure show the effect on total flow-time from removing all possible additional setups (beyond the required first
setup) from each of the first three jobs in three sequences: Jobs 1-2-3-4, Jobs 2-1-3-4, and Jobs 3-2-1-4. For example, in the job sequence 1-2-3-
4, all additional setups (beyond the first setup required for each job) would be removed from Jobs 1, 2, and 3. Each of these jobs would be processed
with a single setup (batch) required for each job. Regardless of the sequence analyzed, minimum flow-time for the four jobs is achieved. The order
in which jobs are examined for removing setups does not matter when using our algorithm.

We used a Visual Basic program to generate the 1,000 problems. For each problem, the algorithm was
applied and the total flow-time was determined. Because, Dobson et al. (1987) assumed commingled
batches and no inter-arrival times, we are demonstrating here just that our method achieves the optimal
global flow-time quickly. In Section 6, we compare our proposed algorithm with Dobson et al. (1987) under
scenarios mimicking what they used.

RESULTS AND DISCUSSION

As noted in our experimental setup, we allowed commingling (intermixing) of batches from different
products, and sequenced these batches according to Conway et al. (1967). We used our new algorithm to
calculate the g and r parameters to find batch setups that could be removed (increasing the local flow-time
for a particular job, but resulting in a global reduction in flow-time). Figure 7 shows the results of 10,000
simulated scenarios. The x-axis shows the number of products to be produced and the y-axis shows what
percent of Dobson et al.’s (1987) method flow-time our new method achieved. As can be seen, our method

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

To
ta

l F
lo

w
-T

im
e

of Iterations Removing One Batch at a Time from the First 3 Jobs to Reduce Wait time
for Job 4

1234

2134

3214

P. Schikora et al | IJMMR ♦ Vol. 8 ♦ No. 2 ♦ 2015

32

achieved a better than 26% reduction in flow-time (averaged over all 10,000 test cases) from the original
algorithm proposed by Dobson et al. (1987). When there were only a few jobs to investigate for potential
setup reductions, sometimes there were no improvements that could be made (i.e., with two products, a few
scenarios did not have an opportunity for our method to improve upon Dobson et al. (1987)). However,
with more jobs, there were more opportunities to apply our new algorithm to reduce total flow-time
substantially.

Figure 7: Proposed Method’s Flow-Time As % of Solution Using Dobson Et al. (1987) Algorithm

This figure shows the total flow-time our method achieved compared to that presented as optimal for the single-product case in Dobson et al.
(1987). Given that Dobson et al. (1987) computed batch sizes for a single job only, their algorithm cannot be optimal when more than one job is
available on the shop floor. We simulated 10,000 production schedules varying from 2 to 10 jobs available simultaneously. With only 2 or 3 jobs
in a production schedule, there was less wait time to eliminate using our method. However, as more jobs (4 or more) were available, removing
setups from upstream (earlier) jobs resulted in total flow-time reductions. As the figure shows, our total flow-time was less than 75% of the flow-
time that would have resulted from applying the algorithm presented originally by Dobson et al. (1987).

As can be seen, our proposed method achieved a better than 26% reduction in flow-time (averaged over all
10,000 test cases) from the original single-product algorithm proposed by Dobson et al. (1987). When there
were only a few jobs to investigate for potential setup reductions, sometimes there were no improvements
that could be made (i.e., with two products, a few scenarios did not have an opportunity for our method to
improve upon Dobson et al. (1987)). However, with more jobs, there were more opportunities to apply our
new algorithm to reduce total flow-time substantially.

CONLUDING COMMENTS

Our proposed method addresses the multiple-product batch scheduling problem from a global flow-time
minimization perspective. Dobson et al.’s (1987) method for determining optimal batch sizes is applicable
only if jobs are never waiting to be processed on the machine. If jobs are waiting, it may be that removing
a setup (moving away from the optimal number of batches calculated by Dobson et al. (1987)) could
decrease the flow-time for processing all jobs over the production horizon. We have shown how our method
can handle jobs where batches may be commingled or where they must be segregated (e.g., Department of
Defense jobs). We have provided guidance on how to modify the number of batches per job if identical
batches need to be processed given resource constraints. We also have shown how to convert fractional
batch quantities to discrete ones. Finally, we have provided a rule for deciding which job to begin
processing, if multiple jobs are waiting to minimize total flow-time. Our new method provides the minimum

60

65

70

75

80

85

2 3 4 5 6 7 8 9 10

Pr
op

os
ed

 M
et

ho
d'

s
Fl

ow
-T

im
e

as
 %

 o
f D

ob
so

n
et

 a
l.

(1
98

7)

Number of Jobs Ready to Process

INTERNATIONAL JOURNAL OF MANAGEMENT AND MARKETING RESEARCH ♦VOLUME 8 ♦NUMBER 2 ♦2015

33

flow-time globally, by recognizing that local increases in flow-time may be more than offset by flow-time
reductions for jobs processed later. Similar to the Dobson et al. (1987) article that inspired it, our research
provides interesting insight into the multiple-product problem, and the algorithm developed is an important
initial contribution to the problem. However, as this was an introductory study, the model defined herein
was restricted, and leaves open many avenues for future research into the topic. This section presents
suggestions for such research. The current model has restrictions, that when relaxed, make for a tougher
and more interesting problem. Some of those restrictions are discussed below.

Include Sequence-Dependent Changeover Times in Addition to Transfer Times - The current model
assumes sequence-independent setup (transfer) times. In many processing environments, though, changing
from one item to another requires the machine to undergo some configuration changes -- usually referred
to as a changeover. With the current model restrictions, the addition of changeover times between products
would have little impact on the system (merely extending the system wait times), and no impact on the
solution procedure. However, if the scheduler were allowed to choose from waiting jobs, changeover times
would affect which job to choose. For example, if two jobs were waiting and one were the same item as the
current job, no changeover time would be required for that job. This would give that job a flow-time
advantage over the different type job, an advantage that would have to be weighed against other
considerations (e.g., which job arrived first, which job is larger, etc.). The impact of this relaxation would
vary based on what other changes are made to the model. Simchi-Levi and Berman (1991) investigated
applying a traveling salesman algorithm for this problem.

Limit the Allowable Transfer Batch Size – Our model assumes that any transfer batch size is acceptable,
allowing batch sizes as small as a single unit and as large as need be. In a practical application setting, that
assumption probably would not hold. For example, if this were a pharmaceutical setting and the machine
bottles pills, there probably would be a standard basic material handling platform (e.g., tray, bin, etc.) that
could hold a specific number of bottles. Assuming the machine could automatically move that platform to
a larger movement container (e.g., a pallet), a reasonable restriction on transfer batch size would be to allow
batches only in multiples of the basic handling platform. In a large processing environment, even the
ultimate movement container might limit the transfer batch size (e.g., batches no larger than a pallet).

This paper examined the issue of batch flow production scheduling on a single machine with deterministic
demand and arrivals over a finite horizon. The objective of the model is to minimize total flow-time over
the horizon. Because the problem appeared complex in mathematical form, a linear search algorithm was
developed to solve this problem. It was demonstrated in Proposition 1 that due to the convex nature of the
optimal total flow-time curve, the algorithm does, indeed, provide optimal results. A general upper bound
on the number of steps required for the algorithm to find the optimal solution was presented. In Section 6,
we demonstrated the robustness of our proposed method. Specifically, using a similar environment to that
in Dobson et al. (1987), we showed a significant reduction in total flow-time over a wide range of jobs
compared to prior results. Finally, numerous recommendations for further research were presented.

REFERENCES

Baptiste, P., 2000. Batching identical jobs. Mathematical Methods of Operations Research, 52 (3), 355-
367.

Bukchin, J., Tzur, M., and Jaffe, M., 2002. Lot splitting to minimize average flow-time in a two-machine
flow-shop. IIE Transactions, 34, 953-970.

Chen, H., Du, B., and Huang, G.Q., 2011. Scheduling a batch processing machine with non-identical job
sizes: a clustering perspective. International Journal of Production Research, 49 (19), 5755-5778.

P. Schikora et al | IJMMR ♦ Vol. 8 ♦ No. 2 ♦ 2015

34

Cheng, M., Mukherjee, N.J., and Sarin, S.C., 2013. A review of lot streaming. International Journal of
Production Research, 51 (23-24), 7023-7046.

Cheng, T.C.E, Kovalyov, M.Y., and Chakhlevich, K.N., 2004. Batching in a two-stage flowshop with
dedicated machines in the second stage. IIE Transactions, 36 (1), 87-93.

Coffman, E.G., Yannakakis, M., Magazine, M.J., and Santos, C., 1990. Batch sizing and job sequencing
on a single machine. Annals of Operations Research 26, 135-147.

Conway, R.W., Maxwell, W.L., and Miller, L.W., 1967. Theory of Scheduling. Reading, MA: Addison-
Wesley.

Dobson, G., Karmarkar, U.S., and Rummel, J.L., 1987. Batching to minimize flow-times on one machine.
Management Science, 33 (6), 784-799.

Glass, C.A. and Possani, E., 2011. Lot streaming multiple jobs in a flow shop. International Journal of
Production Research, 49 (9), 2669-2681.

Jacobs, F.R. and Bragg, D.J., 1988. Repetitive lots: Flow-time reductions through sequencing and
dynamic batch sizing. Decision Sciences, 19, 281-294.

Kalir, A.A. and Sarin, S.C., 2000. Evaluation of the potential benefits of lot streaming in flow-shop
systems. International Journal of Production Economics, 66 (2), 131-142.

Logendran, R., Carson, S., and Hanson, E., 2005. Group scheduling in flexible flow shops. International
Journal of Production Economics, 96 (2), 143-155.

Logendran, R., deSzoeke, P., and Barnard, F., 2006. Sequence-dependent group scheduling problems in
flexible flow shops. International Journal of Production Economics, 102 (1), 66-86.

Mosheiov, G. and Oron, D., 2008. A single machine batch scheduling problem with bounded batch size.
European Journal of Operational Research, 187, 1069-1079.

Mosheiov, G., Oron, D., and Ritov, R., 2005. Minimizing flow-time on a single machine with integer
batch sizes. Operations Research Letters, 33, 497-501.

Naddef, D. and Santos, C., 1988. One-pass batching algorithms for the one-machine problem. Discrete
Applied Mathematics, 21, 133-145.

Ng, C.T.D., Cheng, T.C.E., and Kovalyov, M.Y., 2003. Batch scheduling with controllable setup and
processing times to minimize total completion time. The Journal of the Operational Research Society, 54
(5), 499-506.

Potts, C.N. and Van Wassenhove, L.N., 1992. Integrating scheduling with batching and lot-sizing: A
review of algorithms and complexity. The Journal of the Operational Research Society, 43 (5), 395-406.

Ramasesh, R.V., Fu, H., Fong, D.K.H., and Hayya, J.C., 2000. Lot streaming in multistage production
systems. International Journal of Production Economics, 66 (3), 199-211.

Santos, C. and Magazine, M.J., 1985. Batching in single operations manufacturing systems. Operations
Research Letters, 4 (3), 99-103.

INTERNATIONAL JOURNAL OF MANAGEMENT AND MARKETING RESEARCH ♦VOLUME 8 ♦NUMBER 2 ♦2015

35

Shallcross, D.F., 1992. A polynomial algorithm for a one machine batching problem. Operations
Research Letters, 11, 213-218.

Simchi-Levi, D. and Berman, O., 1991. Minimizing the total flow time of n jobs on a network. IIE
Transactions, 23 (3), 236-244.

Van der Zee, D.J., 2007. Dynamic scheduling of batch-processing machines with non-identical product
sizes. International Journal of Production Research, 45 (10), 2327-2349.

Webster, S. and Baker, K.R., 1995. Scheduling groups of jobs on a single machine. Operations Research,
43, 692-703.

Yang, W., 2009. A batching problem with learning effect considerations. Asia-Pacific Journal of
Operational Research, 26 (2), 307-317.

BIOGRAPHY

Paul Schikora is Professor of Operations & Supply Chain Management in the Scott College of Business at
Indiana State University. He earned his Ph.D. in Operations Management from Indiana University’s Kelley
School of Business. He earned his M.S. degree in Logistics Management from the Air Force Institute of
Technology, and his B.S. degree from the Illinois Institute of Technology. His teaching interests are in
operations management, with a focus on the application of technology to process analysis and
improvement. His research interests include process simulation, quality management and improvement,
manufacturing scheduling, and information systems management. Email: paul.schikora@indstate.edu

Dr. Manikas earned his B.S. in Computer Science and his MBA in Materials and Logistics Management
from Michigan State University, and his Ph.D. from The Georgia Institute of Technology. Prior to that, he
was an instructor for supply chain optimization courses for i2 Technologies and worked as a management
consultant for KPMG Peat Marwick, CSC, and Deloitte Consulting. Dr. Manikas is an Assistant Professor
in the Management Department at the University of Louisville. He is CIRM and CSCP through APICS,
PMP through PMI, and a CPSM through ISM. Email: andrew.manikas@louisville.edu

Dr. Godfrey earned his B.S. in Operations Management and M.S. in Management Information Systems
from Northern Illinois University, and his Ph.D. in Production & Operations Management from the
University of Nebraska - Lincoln. He is A Full Professor of Supply Chain Management in the College of
Business at the University of Wisconsin. He is a CFPIM through APICS and a CPSM through ISM. Email:
godfrey@uwosh.edu

