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ABSTRACT 
 
We explore the problem of batch flow production scheduling on a single machine with deterministic demand 
and arrivals over a finite horizon. The objective of the production system is to minimize total flow-time over 
the horizon to reduce in-process inventory levels and to enable a company to compete on reduced lead-
times. Prior research has established optimal single job batch quantities.  However, with multiple jobs on 
the shop floor, a job may incur wait time, thus the optimal local batch size for a given job may not result in 
global minimization of the total flow-time over all jobs. Our algorithm provides optimal results for batching 
with different products in a capacitated production environment. Numerous recommendations for further 
research are presented. 
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INTRODUCTION 
 

ast research has demonstrated the impact of production-batching (or lot-sizing) decisions have on 
time-related performance measures when demand is deterministic, but batch sizes are flexible. One 
area of this research looks at batching jobs together for processing (e.g., Baptiste, 2000; Coffman, 

Yannakakis, Magazine, & Santos, 1990; Logendran, Carson, & Hanson, 2005; Chen, Du, & Huang, 2011; 
Logendran, deSzoeke, & Barnard, 2006, Ng, Cheng, & Kovalyov, 2003; Van Der Zee, 2007). A second, 
related, area of research looks at breaking a job into batches, i.e., batching products on a single machine 
along with the resultant effect on flow-times. Santos and Magazine (1985), Dobson, Karmarkar, and 
Rummel (1987), and Naddef and Santos (1988) studied the subject of batching to minimize flow-times on 
a single machine. Potts and Van Wassenhove (1992) used the term “lot-sizing” to refer to the decision on 
how to break a given job into smaller batches. A sub-topic of each of these papers involved determining 
and scheduling production batches when completed products are not available for movement until all items 
in a batch are complete. This situation was referred to as the batch-flow (BF) problem. All of these papers 
showed that the single-product batch-flow problem could be solved optimally.  
 
Later, Shallcross (1992) presented a more efficient algorithm for solving the single-product batch-flow 
problem. Then, Mosheiov, Oron, and Ritov (2005) presented an integer solution to the single-product batch-
flow problem. Yang (2009) extended the single-product case to include learning effects using a forward 
dynamic programming algorithm.  Bukchin, Tzur, and Jaffe (2002) extended the single-product case for a 
two-machine environment. Dobson et al. (1987) explored sequencing batches to minimize flow-time on a 
single machine. They investigated three scenarios: 1) the item-flow problem where transfer batches may be 
of size one only, 2) a batch-flow problem for a single product where transfer batches are the same size as 
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processing batches, and 3) a batch-flow problem for multiple products with processing and transfer batches 
the same size. They assumed that all setups performed before processing parts are independent of the prior 
part type processed (sequence-independent). They used a simple index rule for the item-flow problem.  
Because transfer b atches of size one are an inefficient use of resources, the authors looked at two variations 
of batch-flow problems where transfer batches were the same size as processing batches were.  For the 
single product batch-flow problem, they assumed a setup time before each batch and found the optimal 
batch quantities to process. This single product formulation, although not very useful in realistic multi-
product production environments, did allow insights into batch sizing and sequencing to be used for the 
multiple-product case. Finally, Dobson et al. (1987) solved the optimal number of batches and the quantities 
in those batches.  They suggested using heuristics to make local batch improvements, but did not remove 
batches explicitly from the production sequence to reduce the total flow-time for all jobs. 
 
The previous research has been limited in that the more difficult multiple-product case (with jobs consisting 
of different products with different unit processing and setup times) has not been solved optimally in any 
of the papers, though heuristics have been presented (e.g., Dobson et al., 1987). In addition, the previous 
research assumed that all jobs would be available for processing at time zero. Although providing essential 
insight into the batch-flow problem, the previous research left unexplored the more realistic issue of 
multiple jobs with non-zero release dates (or times within a day) over a finite time horizon. When analyzing 
production capacity over a finite horizon, applying the scheduling formulas from the earlier papers may 
result in wait times for arriving jobs. These wait times, in turn, would increase total flow-time over all of 
the jobs; therefore, different scheduling methods must be not applied. 
 
We investigate how to achieve optimal flow-time schedules in this complex environment.  We extend and 
expand upon the prior work of Dobson et al. (1987) by looking at the most difficult, and realistic, scenario 
– the multiple-product batch flow problem. We illustrate how scheduling issues may result when using the 
optimal batch sizes calculated in prior research. Those batches are optimal only if no subsequent jobs are 
ready to be processed until after the first job is finished completely. However, if jobs are ready and waiting, 
we want to provide guidance on how to determine whether reducing the number of batches (effectively by 
removing setups on earlier jobs) could reduce wait time of later jobs, thus resulting in global flow-time 
reduction. To provide fuller coverage of potential scenarios that a scheduler may encounter, we show how 
to process batches of identical size, discrete batch quantities, and jobs where batches are not allowed to be 
commingled (e.g., government materials). We examine scenarios where all jobs are released at time zero 
(as in Dobson et al. (1987) and with spaced inter-arrival times.  We also extend the commingled batches in 
Dobson et al. (1987) to solve the situation where products must be kept segregated throughout processing.  
We develop an algorithm to sequence work optimally under all of these scenarios. We simulate diverse 
production environments to demonstrate that our proposed method does, indeed, outperform the prior 
methods presented in the literature. 
 
The use of different scheduling methods is an important area to investigate further because inventory and 
throughput are related to scheduling decisions. Little’s Law states that flow-time equals inventory divided 
by throughput.  If we can reduce flow-time over the horizon, we are able either to lower average inventory 
on hand or to increase throughput (parts produced by time), or both. Having inventory in the form of raw 
materials or work in process is money tied up that needs to be borrowed. Alternatively, inventory incurs an 
opportunity cost. Throughput is the rate that the system makes money. If throughput were increased, we 
would be able to produce value-added products more quickly; thus, we could sell them sooner and be better 
off financially according to the time value of money. Being able to use the same machine to process all 
products required, but more quickly, could reduce money tied up in inventory, and increase customer 
service levels and revenue. The remainder of this paper is organized as follows. The next section provides 
a literature review of the batch-flow problem structure and the results of prior research for the single-
machine case. Next, we present the data and the methodology used to study the specific batch-flow problem 
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formulation examined in our paper. The subsequent section discusses the results from implementing our 
proposed algorithm.  The paper closes with concluding comments. 
 
LITERATURE REVIEW 
 
The issue examined in our paper is a single-machine production loading and scheduling problem with 
deterministic system parameters. The single-machine problem is well researched and best presented by 
Dobson et al. (1987). In their model, they assumed that a known quantity of items is available for processing 
at a machine. This quantity is to be divided into batches for producing and transferring the items from the 
machine. After a batch is completed, it is removed from the machine and available for movement. The next 
batch then can be started. In this formulation, production batches and transfer batches are the same size. 
Because of the time required to move the completed products off the machine, each batch incurs a transfer 
time to remove the batch and to transfer it to the next work center, during which the machine is non-
productive and not available to process the next batch. Using the terminology of Cheng, Mukherjee, and 
Sarin (2013), this transfer and removal time would have the same effect on flow-time that a sublot-attached 
setup would have.  One example in which process and transfer batches are equal is found in shops where 
movement of batches between machines might be accomplished using containers such as pallets or carts 
(Webster & Baker, 1995). A second example provided by Coffman et al. (1990) considered pick and place 
machines loaded with chips of various sizes that are inserted into circuit boards. Upon completion, each 
circuit board is loaded onto a cart by the operator of the pick and place machine. Then, the operator of the 
pick and place machine periodically stops production and moves the cart to a soldering machine. Our 
research focuses on the single machine problem, with n jobs in an over-capacitated situation for both the 
single-product and the multiple-product cases. The formulation used in this paper for the single-product 
case follows: 
 
i = the number of batches of a product in a job. 
d = the number of items in a job. 
p = the unit processing time for each unit in a job. 
s = the removal and transfer time for each batch of a job. Alternatively, this term may be used for setup 
time before running an individual batch. 
M = an upper bound on the number of batches for a job. 
 
If iq  = quantity of items processed in batch i, the batch-flow problem for the single-product case [BF1] can 
be formulated as: 
 

∑ ∑
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Dobson et al. (1987) showed that the optimal number of batches ( *k ) to solve [BF1] is found using the 
following: 
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The optimal size of each batch ( *
iq ) is found using the modified formula in the second heuristic from 

Dobson et al. (1987). This modification is used such that the optimal number of batches from (3) could be 
used ( *' kk = ), or any 'k  less than *k  could be used to produce fewer batches at the expense of increased 
job flow-time. 
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In (4), id  is the demand remaining after i – 1 batches have been scheduled, )1(' −−= ikki  and the quantity 

for batch i = )0,max( *
iq to ensure positive quantity values. The batches per job are scheduled in non-

increasing order. This ordering of batches may seem contrary to traditional scheduling methods based on 
the shortest processing time (SPT) concept, where the smallest processing time requirements are handled 
first. However, it does follow that when demand is heavy at a machine, larger batches should be produced 
first to decrease the size of the queue rapidly. As demand lessens, batch sizes could be decreased to 
concentrate more on individual item flow. These quantities produced from (4) also are supported by the 
findings of papers on the repetitive lots concept (Jacobs & Bragg, 1988) and lot streaming (Cheng et al., 
2013; Kalir & Sarin, 2000; Ramasesh, Fu, Fong, & Hayya, 2000, Glass & Possani, 2011). Figure 1 
illustrates the batching structure created by (3) and (4). The notation bij in Figure 1 represents the ith batch 
in job j. For ease of understanding, we have used s1 to represent the setup time before running each batch 
of product 1 and s2 to represent the setup time before running each batch of product 2 However, the s terms 
may represent transfer times between operations in many businesses.  The job arrival time is represented 
by aj and the job processing start time is represented by σj. 
 
Figure 1: Two-Job Schedule without Capacity Issues 

 

 
This figure shows two jobs—Jobs 1 and 2. Job 1 is broken down into Batches 1, 2, and 3. Before each batch in Job 1 is run, a setup occurs.  
Job 2 is broken down into Batches 1 and 2. Before each batch in Job 2 is run, a setup occurs. As shown above, Batch 3 of Job 1 would be completed 
before Job 2 arrives. Hence, Job 2 would not incur wait time. 
 
The batch flow-time is found by multiplying the quantity in each batch by the batch completion time. The 
total flow-time for a job is the sum of all batch flow-times using (1). Though Dobson et al. (1987) focused 
on choosing both the optimal number of batches and the batch sizes, (4) also could provide the optimal 
batch sizes given any value of k to which one might be restricted. If, for some reason, the scheduler were 
limited to breaking the processing requirement into a non-optimal number of batches (i.e., 'k ), the optimal 
batch sizes could be found by applying Equation (4) repetitively. For illustration, assume that job 1 arrives 
at time 0, with demand (d) of 21 units, batch setup time (s) of 25, and processing time per unit (p) of 5. 
From (3), the value of 2.44 would have a ceiling function applied, setting the optimal number of batches (

*k ) to 3. We would set 'k  to our optimal *k initially to compute the job flow-time. We then would use 
Equation (4) three times (i = 1, 2, 3) to calculate the appropriate batch quantities, as follows: 
 
Step 1: Demand Remaining = 21 & Batch Quantity = 12. 
Step 2: Demand Remaining = 9 & Batch Quantity = 7. 

b11 s 1 b12 s 
1 b13 s 

1 

time 

b21 s 
2 b22 s 2 

0 a2=σ2 
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Step 3: Demand Remaining = 2 & Batch Quantity = 2. 
 
Identical Batch Sizes 
 
Dobson et al. (1987) also assumed that the scheduler is free to select arbitrary sizes for the different batches. 
Realistically, however, a scheduler might be limited to scheduling batches of as nearly identical size as 
possible. In that case, it can be shown that the optimal number of batches **k is found by: 
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s
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The optimal batch sizes ( **q ) all are set initially at: 
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The remaining x units would be assigned one each to the first x batches. For example, if d = 75, p = 1, and 
s = 2, then 3,9,8 **** === xqk . The resultant batch sizes would be 10, 10, 10, 9, 9, 9, 9, and 9, with a 
total flow-time of 3,825. 
 
Discrete Batch Sizes 
 
Often, batch sizes calculated from (4) are non-integer. For discrete products, the quantities could be 
modified according to Mosheiov, Oron, and Ritov (2005) and Mosheiov and Oron (2008). For example, we 
could revisit our original example with job 1 with demand (d) of 21 units, setup time (s) of 25, and 
processing time per unit (p) of 4 (rather than 5). From (3), the optimal number of batches (k*) would equal 
3. We would set k’ to our optimal k* to compute the flow-time. Again, we would use (4) to calculate the 
appropriate continuous batch quantities. Next, the fractional units would be calculated as  ii qq − . We 
then would use (7) to find the sum of fractional units to determine the number of batches (B) to round up 
to integer values. 
 

 ( )∑
=

−=
*

1

k

i
ii qqB          (7) 

 
The B batches with the highest fractional portions would have a ceiling function applied.  Next, the 
remaining ( Bk −' ) batches would have a floor function applied.  In the case where more than one batch 
had the same highest fractional portion, the ceiling function would be applied to the earliest of those batches.  
For our example, B =1 ([13.25 – 13] + [7 – 7] + [.75 – 0]). Batch 3 has the highest fractional portion of .75, 
so a ceiling function would be applied to make it a quantity of 1. The remaining two batches (1 & 2) would 
have a floor function applied to their quantities. The integer batches that produce the optimal flow-time for 
this job would be 13, 7, and 1 (as shown in Table 1). Note: For integer batches, it is theoretically possible 
to have a tie with other batch quantity values for minimum flow-time. 
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Table 1: Converting Fractional Batch Quantities to Integer Values 
 

i Demand 
Remaining 

Batch Quantity 
qi 

Fractional 
Value 

Integer qi 

1 21 13.25 0.25 13 
2 7.75 7 0 7 
3 0.75 0.75 0.75 1 

This table shows how to convert fractional batch quantities to integer values. We use the demand remaining in  
Equation (4) to calculate the continuous batch quantities. Next, we determine the fractional value for each batch.  
After that, we use Equation (7) to determine the number of batches to round up to integer values. Given that B = 1,  
we search for the one batch with the highest fractional value (Batch 1) and round its quantity up to an integer value.  
Then, we round down the quantities for the remaining batches with fractional values. 
 
DATA AND METHODOLOGY 
 
Problem Formulation 
 
Dobson et al. (1987) provided many important results, including optimal formulas for the single-product 
batch-flow problem. However, they did not address how production capacity limits could affect multiple-
product batching decisions and the resultant flow-time over a finite horizon. Also, they assumed that items 
arrive in groups for processing (hereafter, these groups are referred to as "jobs"), with the first job ready at 
time zero and the remaining jobs ready at known arrival points in the future. Finally, they did not provide 
guidance on how to sequence jobs when multiple jobs are ready to be processed at the same time. We fill 
in these gaps with our proposed model.  To demonstrate the impact of capacity constraints, consider the 
two-job example in Figure 2, where each job is represented by a horizontal bar, with the length of the bar 
representing the processing time requirement of the job. Clearly, if all the jobs could be batched individually 
and processed completely before the next job arrival, then (3) would suffice to calculate the number of 
batches per job. However, consider when the processing time requirement of all the jobs approaches 
capacity over the horizon (or a portion of it). In that case, breaking up the jobs into batches, with the 
additional setup time required for each batch, may induce wait times for later jobs. For example, assume 
that job 2 arrives before the last batch of job 1 finishes. 
 
Figure 2: Two-Job Schedule—Job 2 Arrives before Job 1 Finishes 
 

 
This figure shows two jobs—Jobs 1 and 2. Job 1 is broken down into Batches 1, 2, and 3. Before each batch in Job 1 is run,  
a setup occurs. Job 2 is broken down into Batches 1 and 2. Before each batch in Job 2 is run, a setup occurs. As shown above,  
Batch 3 of Job 1 would not be completed before Job 2 arrives. Hence, Job 2 would incur wait time. 
 
Because waiting time (denoted jω  for job j) would increase the flow-time for a job, applying Equation (3) 
to determine the number of batches for each job in isolation may not result in minimum total flow-time 
over all of the jobs in the schedule. In that case, another method must be found to minimize total flow-time 
across all jobs. In this problem, multiple jobs are scheduled to arrive over a finite horizon at a single machine 
for processing. Each job contains multiple identical items, and different jobs may contain different products 
with unique processing and transfer times. Processing time requirements for the jobs are approaching, or 
exceeding, capacity over the horizon. The jobs are to be processed in a batch-flow method, i.e., no items in 
a batch are ready for movement until the last item in the batch is complete. The scheduler is free to choose 
the number and the size of batches for each job, and the objective is to minimize total flow-time over all 
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jobs over the time horizon. Other assumptions of the model include the following: Job and machine 
characteristics are not alterable in the short term (i.e., there is no way to increase the machine capacities or 
to reduce product setup times, etc.). For notation, time zero is indexed at the arrival of the first job. Let 
there be n jobs to schedule for processing. Let j = 1,…, n index the jobs in the order of their arrival. Let jk  
be the number of batches that job j is broken into, and jki ,..,1=  index the batches for job j in processing 
order. Also, let qij = the quantity processed in the ith batch of job j, σij = the start time of the ith batch of job 
j, and τj = the completion time of job j. Assume that the following are known and fixed: 
 
dj = the number of units in job j. 
pj = the unit processing time for each unit of job j. 
sj = the transfer time (or setup time) of a batch of job j. 
aj = the arrival time of job j, measured from time zero. 
 
The multiple-product problem now can be written as:  
 

( )[ ]∑∑ ∑
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The first constraint ensures that all items are processed. The next four constraints ensure proper job start 
times based on processing precedence. The definition of jτ  is provided to simplify notation. The next 
section presents an algorithm developed to solve this problem. This algorithm is built upon the optimality 
properties of Equations (3) and (4) extended to the multiple-product problem. First, the logic behind the 
algorithm is explained, followed by a brief discussion of relaxation of the arrival/waiting constraint. Next, 
the algorithm is formally stated. 
 
Multiple-Product Algorithm 
 
Given that Equations (3) and (4) provide the optimal continuous batches for the single-product 
unconstrained problem, the results from Dobson et al. (1987) provide a good starting point for solving the 
multiple-product problem. First, consider the two-job problem illustrated in Figure 2. Given any start time 
for each job, the batches shown (assumed to be calculated from Equation (4)) would minimize each job's 
individual flow-time. Given that, it is obvious that the only way to reduce flow-time further would be to 
reduce the wait time for the second job ( 222 a−= σω ). Because job 2 cannot start until job 1 is completed, 
the only way to reduce the wait time for job 2 would be to reduce the makespan of job 1, thereby allowing 
job 2 to start earlier than currently scheduled. The current makespan of job 1 is ( ) 111 3* spd + . The 
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processing time required by job 1 cannot be changed; however, the total transfer time associated with job 
1 could be reduced by reducing the number of batches in job 1 ( 1k ). Each reduction in 1k  would reduce the 
total transfer time of job 1 and the makespan of job 1 by . If a batch were removed from job 1, its flow-
time normally would increase. Note: Because this is a discrete schedule, reducing the number of batches 
by one from the computed optimal value occasionally could result in no change in flow-time.  For example, 
assume that job 1 in the two-job problem represented in Figure 2 is rescheduled into two batches, thus 
removing a batch from job 1. The revised schedule is depicted in Figure 3. Decreasing the number of batches 
in job 1 is not optimal for that job (i.e., removing a batch increases the flow-time for job 1). However, the 
resultant reduction in transfer time decreases the wait time for job 2, reducing the total flow-time of job 2, 
which in turn, may reduce the total flow-time over all jobs. In this example, job 2 can start immediately 
when it arrives (σ2=a2) after the re-batching of job 1. 
 
Figure 3: Reduction of k for Job 1 Eliminates Wait Time for Job 2 
 

This figure shows two jobs—Jobs 1 and 2. Job 1 now is broken down into fewer batches—Batches 1 & 2. Before each batch in Job 1 is  
run, a setup occurs. Job 2 still is broken down into Batches 1 and 2. Before each batch in Job 2 is run, a setup occurs. As shown above,  
Batch 2 of Job 1 now will be completed before Job 2 arrives. Hence, Job 2 will no longer incur wait time. 
 
Generally, as a function of kj, optimal job flow-time is convex, increasing left of k* from Equation (3). 
However, 2ω  will decrease by },min{ 122 sωδ = , and the flow-time for job 2 will decrease by 22 * dδ . 
If a reduction in k1 results in a net increase in total flow-time for all jobs, there is no way to reduce total 
flow-time, and the current schedule is optimal. However, if a reduction in 1k  results in a net decrease in 
total flow-time over all jobs, this change should be made. In that case, job 1 would be rescheduled using 
(4) with 1*

11 −= kk . If 2ω were still positive, the rescheduling process would repeat as long as it results in 
a decrease in total flow-time, setting ykk −= *

11 , where y is the number of batches removed from job 1. 
When 1,0 12 == kω , or a reduction in 1k  results in an increase in total flow-time, the process stops, and 
the current schedule is optimal. The same logic could be extended to problems with more than two jobs. 
Figure 4 shows an example four-job problem where the wait time of jobs 2, 3, and 4 may be reduced by 
removing a batch from job 1. 
 
For further illustration, assume a schedule with two jobs. Job 1 has d = 200, p = 25, s = 100 and arrival time 
by default set at t = 0. Job 2 has d = 100, p = 1, s = 100, arrival time t = 2,000. Using (3) and (4), we 
calculate the optimal number of batches and their respective quantities. In this example, 𝑘𝑘1∗ = 10, 𝑘𝑘2∗ = 1, 
σ2 = 5,000, and ω2 = 3,000.  From this, we can produce the data in Table 3, shown in Figure 5. The two 
lemmas below are demonstrated in Figure 5. 
 
Lemma 1: Flow-time for downstream jobs may decrease linearly if wait time is reduced by eliminating 
batches from an upstream job. Eliminating yj batches from the calculated k* in Equation (3) for an upstream 
job j can decrease the flow-time of downstream jobs. Let this reduction of flow-time for downstream jobs 
from job j be represented by y

jr , with an upper limit of: 
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Figure 4: Representative Four-Job Schedule 
 

 
This figure shows four jobs broken into batches deemed optimal given prior research methods. However, as scheduled, Jobs 2, 3, and 4  
incur wait time, which may increase the total flow-time.  We propose that reducing the number of batches (setups) in upstream  
(earlier) jobs may decrease the total flow-time over all jobs. 
 
The actual value of 𝑟𝑟𝑗𝑗

𝑦𝑦depends on the structure of any specific problem and can be found from the resultant 
batch schedule for any value of y.  As a function of y, 𝑟𝑟𝑗𝑗

𝑦𝑦 is stepwise linear, non-decreasing from y = 1 to 
𝑘𝑘𝑗𝑗∗ - 1. Its value would be calculated for increasing values of yj (# of batches removed from job j). Removing 
a batch from an upstream job j may remove min{sj, ωj+1} from downstream jobs. Flow-time reduction for 
downstream jobs is the wait time removed per job multiplied by the demand (number of units) for that job. 
As long as there is remaining wait time for job j + 1, removing more batches from job j (increasing yj) can 
reduce flow-time of the downstream jobs. The two-job example presented above is used to show this flow-
time reduction of a downstream job in Table 2 and Figure 5, where the x-axis is the number of batches 
removed (y1) from the 𝑘𝑘1

∗ calculated in (3) for job 1. The line labeled “Incremental r” on the graph in Figure 
5 shows the incremental reduction in  flow-time for job 2 from removing the yth batch from job 1 (𝑟𝑟1

𝑦𝑦 −
𝑟𝑟1
𝑦𝑦−1). This equals zero for y = 0 and any value of y for which there is no reduction in ω2 . However, in this 

example, job 2 still would incur waiting time even if we removed all nine batches possible (recall that 𝑘𝑘1∗ =
10) from job 1. 
 
Table 2: Batch Scheduling Results from Example Problem 
 

This table shows a numerical example with two jobs, each job’s local (individual) flow-time, and total flow-time over all jobs after removing  y 
setups from job 1.  The cumulative increase in the local flow-time of job 1 due to removing setups (i.e., decreasing the number of batches from the 
optimal) is shown as g. The corresponding cumulative reduction in local flow-time for all downstream batches (job 2) is shown as r. The last two 
columns show the incremental effect on the g and r terms due to removing one more setup (batch) from job 1. 
 
Lemma 2: Flow-time for a given job increases geometrically with the number of batches eliminated from 
the optimal k for that job as determined with (3). Removing batches for job j increases the flow-time for 
job j by delaying the completion of the original quantities of the kj

* - y batches. Let y
ijz  denote the 

incremental batch quantity for batch i on job j after reducing the number of batches by y (i.e., y
ijz  is the 

y k1 Job 1 
Total Flow 

Job 2 
Total Flow 

Job Set 
Total Flow 

𝒈𝒈𝟏𝟏
𝒚𝒚 𝒓𝒓𝟏𝟏

𝒚𝒚 𝒈𝒈𝟏𝟏
𝒚𝒚 − 𝒈𝒈𝟏𝟏

𝒚𝒚−𝟏𝟏 𝒓𝒓𝟏𝟏
𝒚𝒚 − 𝒓𝒓𝟏𝟏

𝒚𝒚−𝟏𝟏 

0 10   643,500 620,000 1,263,500         0          0         0         0 
1   9   643,575 610,000 1,253,575        75 10,000        75 10,000 
2   8   644,100 600,000 1,244,100      600 20,000       525 10,000 
3   7   645,850 590,000 1,235,850    2,350 30,000    1,750 10,000 
4   6   649,850 580,000 1,229,850    6,350 40,000    4,000 10,000 
5   5   658,000 570,000 1,228,000   14,500 50,000     8,150 10,000 
6   4   674,000 560,000 1,234,000   30,500 60,000   16,000 10,000 
7   3   706,275 550,000 1,256,275   62,775 70,000   32,275 10,000 
8   2   779,900 540,000 1,319,900 136,400 80,000   73,625 10,000 
9   1 1,020,000 530,000 1,550,000 376,500 90,000 240,100 10,000 
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quantity increase to batch i of job j as the total demand needs to be satisfied using fewer batches ( y
jk ) than 

the optimal(𝑘𝑘𝑗𝑗∗)). Let ykk j
y
j −= * , and ijq denote the original batch quantities for the *

jk  batches as 
determined by (3) and (4). For job j, the increase in flow-time (𝑔𝑔𝑗𝑗

𝑦𝑦) is given by Equation (16). Equation 
(16) follows from algebraic manipulation of the flow-times with y

jk  batches minus the flow-time with *
jk  

batches. 
 

𝑔𝑔𝑗𝑗
𝑦𝑦 = ∑ �𝑞𝑞𝑖𝑖𝑗𝑗 ∗ 𝑝𝑝𝑗𝑗 ∗ ∑ 𝑧𝑧𝑥𝑥𝑗𝑗

𝑦𝑦𝑖𝑖
𝑥𝑥=1 �

𝑘𝑘𝑗𝑗
𝑦𝑦

𝑖𝑖=1 − ∑ �𝑞𝑞𝑖𝑖𝑗𝑗 ∗ ∑ ��𝑞𝑞𝑥𝑥𝑗𝑗 ∗ 𝑝𝑝𝑗𝑗� + 𝑠𝑠𝑗𝑗�𝑖𝑖
𝑥𝑥=1 �

𝑘𝑘𝑗𝑗
∗

𝑖𝑖=𝑘𝑘𝑗𝑗
𝑦𝑦+1

+∑ �𝑧𝑧𝑖𝑖𝑗𝑗
𝑦𝑦 ∗ ∑ ���𝑧𝑧𝑥𝑥𝑗𝑗

𝑦𝑦 +𝑖𝑖
𝑥𝑥=1

𝑘𝑘𝑗𝑗
𝑦𝑦

𝑖𝑖=1

𝑞𝑞𝑥𝑥𝑗𝑗� ∗ 𝑝𝑝𝑗𝑗� + 𝑠𝑠𝑗𝑗��          (16) 
 
Figure 5: Net Change in Flow-Time as Batches Are Removed 
 

 
This figure shows the individual effects of local flow-time for job 1 increasing (incremental g), flow-time of downstream jobs decreasing 
(incremental r), and the combined total flow-time net result.  As long as the slope of the total flow-time is negative, removing a batch (and its setup) 
from an upstream job results in a net reduction in total flow-time over all jobs. 
 
From Equation (4), batch quantities increase for remaining batches of a given job when its k is reduced. In 
addition, as the number of batches removed (y) increases, y

ijz  increases at an increasing rate for the 

remaining batches.  The first term in Equation (16) is the incremental additional flow-time for the first y
jk  

batch’s original quantities caused by waiting for the additional processing time of their increased batch 
sizes (z increments).  The second term is the removal of flow-time from the original last y batches because 
we are no longer using *

jk  batches, but rather are using y
jk = yk j −*  batches.  The final term adds back the 

flow-time for the additional y
ijz units to be processed in each of the new y

jk batches.  The incremental effect 
of Equation (16) is shown in Figure 5.  The line labeled “Incremental g” shows the incremental increase in 
the flow-time of job 1 by removing the yth batch from job 1 (𝑔𝑔1

𝑦𝑦 − 𝑔𝑔1
𝑦𝑦−1). By comparing both incremental 

lines, we can see how large y should be to minimize total flow-time. As long as the incremental r is greater 
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than the incremental g for a particular value of y, removing the yth batch will reduce total flow-time for the 
entire schedule. Similar logic to that shown above for n = 2 can be applied to scheduling a multiple-product 
problem with n > 2. Consider the representative batch schedule shown in Figure 4 (n = 4), and assume the 
batches shown are optimal for each individual job. Because there is wait time for jobs 2 through 4, 
reductions in 21 , kk or 3k  will decrease the flow-time of the respective downstream job(s). Given this 
starting schedule, reducing 1k  will provide the greatest decrease in downstream flow-time. As 1k  is 
decreased, it eventually will stop being the best candidate for reduction as 2ω  is eliminated or the increase 
in flow-time for job 1 becomes so large that another 𝑘𝑘𝑗𝑗 becomes the better choice for reduction. As long as 
at least one jω  remains positive, there is a potential for benefit from reducing an appropriate 1−jk . For any

0=jω , there will be no possible benefit from reducing 1−jk . 
 
Proposition 1: After y

jk  is found for any job j such that the net total flow-time of all jobs does not decrease, 

further reductions in y
jk can only further increase total flow-time. 

 
Proof: Let 'y

jk be the first number of batches evaluated (smallest y) where the total flow-time of all jobs 
does not decrease. This means the incremental increase in 𝑔𝑔𝑗𝑗

𝑦𝑦 is no longer fully offset by the incremental 
increase in  𝑟𝑟𝑗𝑗

𝑦𝑦 . From Lemma 1, y
jr  increases linearly, and from Lemma 2, 𝑔𝑔𝑗𝑗

𝑦𝑦 increases geometrically as 
y
jk  is decreased from 𝑘𝑘𝑗𝑗∗. Therefore, no number of batches less than 'y

jk  can further decrease total flow-
time.  By evaluating these net total flow-time trade-offs, an improved final solution could be found from 
the original one shown in Figure 4. Proposition 1 allows us to specify our algorithm. A logical method of 
evaluating and choosing reductions in jk is presented in §4.3. 
 
Discussion on Relaxation of Arrival Times 
 
In the current model, jobs are processed in the order of their arrival. However, which job should be selected 
if two jobs are waiting at the completion of the current job, or arrive at the same time? 
 
Proposition 2: If two jobs are ready at the same time, then if )()( 2222111112 dpskddpskd +>+ , schedule 
job 2 first. Otherwise, schedule job 1 first. 
 
Proof: The proof follows from algebraic manipulation of the flow-times of the two cases: 
 
 )()( 22221111211111 dpskdpskddpskdA +++++=  when job 1 is processed before job 2, and 

)()( 22221111122222 dpskdpskddpskdB +++++=  when job 2 is processed before job 1. Comparing 
A with B and simplifying leaves the inequality )()( 2222111112 dpskddpskd +>+  to indicate that job 2 
should proceed before job 1 to minimize total flow-time.  
 
Similarly, for m jobs waiting to be processed on the machine, the job j with the highest value of 

jimjidpskddpskd jjjjiiiiij ≠=+−+ ,,..,1,),()( , is processed first to minimize the total flow-time 
equations over all jobs competing for the same capacity.  Similarly, for the remaining m-1 jobs, the next 
highest value of jimjidpskddpskd jjjjiiiiij ≠−=+−+ ,1,..,1,),()(  is then processed, with repeated 
application of that equation until there is only one job left to sequence. 
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Algorithm Statement 
 
Because total flow-time is a function of jk  (the only variable in the problem), a simple type of search 
method (i.e., marginal analysis) was chosen to drive the multiple-product algorithm. The starting point for 
the algorithm is the solution where the number of batches for each job ( jk ) is set at the optimal level ( *

jk ) 
determined from Equation (3) from Dobson et al. (1987) for a single job.  Next, each job is analyzed 
(beginning with job 1), subtracting one batch at a time until there is no more reduction in total flow-time, 
there is no more wait time in the system, or jk  has been set to one batch. This algorithm is applied to the 
first n – 1 jobs.  From Proposition 1, we can set a general upper bound on the number of iterations of the 
algorithm until the optimal solution is achieved. 
 

∑
−

=

=
1

1

*
n

j
jkU           (17) 

Algorithm Steps 
 
Calculate 𝑘𝑘𝑗𝑗∗and 𝑞𝑞𝑖𝑖𝑗𝑗∗  for each of the j = 1,…, n jobs using (3) and (4) 
 
Set 𝑘𝑘𝑗𝑗 = 𝑘𝑘𝑗𝑗∗ for all 𝑗𝑗 
Set 𝑗𝑗 = 1 
Set 𝑟𝑟𝑗𝑗0 = 𝑔𝑔𝑗𝑗0 = 0  
For each job j,     j = 1, …, n-1 
  For y = 1 to 𝑘𝑘𝑗𝑗∗ − 1  
 
Calculate batch sizes from (4) and resultant schedule 
 
Calculate 𝑔𝑔𝑗𝑗

𝑦𝑦 and 𝑟𝑟𝑗𝑗
𝑦𝑦 

   If  𝑔𝑔𝑗𝑗
𝑦𝑦 − 𝑔𝑔𝑗𝑗

𝑦𝑦−1 >  𝑟𝑟𝑗𝑗
𝑦𝑦 − 𝑟𝑟𝑗𝑗

𝑦𝑦−1  , then exit loop, ‘no more reductions 
possible’ 
   Set 𝑘𝑘𝑗𝑗 = 𝑘𝑘𝑗𝑗

𝑦𝑦 
Next y 

Next job j 
 
Although our proposed algorithm analyzes jobs in sequential order, this is not necessary to achieve the 
optimal flow-time in a fixed number of iterations (as bounded by Equation (17)). Figure 6 shows a four-job 
example, with the first three jobs ready to process at the same time and the fourth job released later (thus 
always scheduled last).  The figure shows the effect on total flow-time by applying the algorithm to reduce 
setups on the first three jobs for three different sequences. The x-axis specifies the number of batches 
removed from the original 1,...,1,* −= njk j , batches calculated using Equation (3). Although not drawn 
in the figure (for readability, only three sequences are shown), investigating all six possible sequences of 
the first three jobs for setup reduction has the same final flow-time effect.  Therefore, the order in which 
jobs are investigated with our formulae does not affect attainment of the optimal flow-time.  The next 
section describes the experimental design.  This is followed by a section that re-examines the commingled 
batches all arriving at time 0, as done in Dobson et al. (1987). The final sections are our conclusions and 
recommendations for further research. 
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Experimental Design 
 
To test the effectiveness of the multiple-product algorithm for the case where commingling of products is 
not allowed, the following experimental factors were considered: 
 
Number of problems: 1,000 
Number of jobs/products per problem: Randomly generated as U(2, 100) 
Number of units in a job (demand): U(1, 1,000) 
Unit processing time for each unit of a job: U(1, 50) minutes 
Transfer time for a batch within a job: U(1, 100) minutes 
Inter-arrival times between jobs: U(1, 1,000) minutes.  
 
Figure 6: Flow-Time Reduction Per Iteration For Various Job Sequences (Four-Job Scenario) 

 

 
This figure shows an example with three jobs available for processing at the same time, with a fourth job arriving later.  If when using Equations 
(15) and (16) we determine that removing a batch setup from an upstream job results in a net reduction in  total flow-time, that setup should be 
removed.  The three lines in the figure show the effect on total flow-time from removing all  possible additional setups (beyond the required first 
setup) from each of the first three jobs in three sequences: Jobs 1-2-3-4,  Jobs 2-1-3-4, and Jobs 3-2-1-4. For example, in the job sequence 1-2-3-
4, all additional setups (beyond the first setup required for  each job) would be removed from Jobs 1, 2, and 3. Each of these jobs would be processed 
with a single setup (batch) required for  each job. Regardless of the sequence analyzed, minimum flow-time for the four jobs is achieved. The order 
in which jobs are examined  for removing setups does not matter when using our algorithm. 
 
We used a Visual Basic program to generate the 1,000 problems. For each problem, the algorithm was 
applied and the total flow-time was determined. Because, Dobson et al. (1987) assumed commingled 
batches and no inter-arrival times, we are demonstrating here just that our method achieves the optimal 
global flow-time quickly. In Section 6, we compare our proposed algorithm with Dobson et al. (1987) under 
scenarios mimicking what they used. 
 
RESULTS AND DISCUSSION 
 
As noted in our experimental setup, we allowed commingling (intermixing) of batches from different 
products, and sequenced these batches according to Conway et al. (1967).  We used our new algorithm to 
calculate the g and r parameters to find batch setups that could be removed (increasing the local flow-time 
for a particular job, but resulting in a global reduction in flow-time).  Figure 7 shows the results of 10,000 
simulated scenarios. The x-axis shows the number of products to be produced and the y-axis shows what 
percent of Dobson et al.’s (1987) method flow-time our new method achieved.  As can be seen, our method 
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achieved a better than 26% reduction in flow-time (averaged over all 10,000 test cases) from the original 
algorithm proposed by Dobson et al. (1987). When there were only a few jobs to investigate for potential 
setup reductions, sometimes there were no improvements that could be made (i.e., with two products, a few 
scenarios did not have an opportunity for our method to improve upon Dobson et al. (1987)). However, 
with more jobs, there were more opportunities to apply our new algorithm to reduce total flow-time 
substantially. 
 
Figure 7: Proposed Method’s Flow-Time As % of Solution Using Dobson Et al. (1987) Algorithm 
 

 
This figure shows the total flow-time our method achieved compared to that presented as optimal for the  single-product case in Dobson et al. 
(1987). Given that Dobson et al. (1987) computed batch sizes for a single  job only, their algorithm cannot be optimal when more than one job is 
available on the shop floor.  We  simulated 10,000 production schedules varying from 2 to 10 jobs available simultaneously.  With only 2 or 3 jobs  
in a production schedule, there was less wait time to eliminate using our method.  However, as more jobs (4 or more)  were available, removing 
setups from upstream (earlier) jobs resulted in total flow-time reductions.  As the  figure shows, our total flow-time was less than 75% of the flow-
time that would have resulted from applying the  algorithm presented originally by Dobson et al. (1987). 
 
As can be seen, our proposed method achieved a better than 26% reduction in flow-time (averaged over all 
10,000 test cases) from the original single-product algorithm proposed by Dobson et al. (1987). When there 
were only a few jobs to investigate for potential setup reductions, sometimes there were no improvements 
that could be made (i.e., with two products, a few scenarios did not have an opportunity for our method to 
improve upon Dobson et al. (1987)). However, with more jobs, there were more opportunities to apply our 
new algorithm to reduce total flow-time substantially. 
 
CONLUDING COMMENTS 
 
Our proposed method addresses the multiple-product batch scheduling problem from a global flow-time 
minimization perspective. Dobson et al.’s (1987) method for determining optimal batch sizes is applicable 
only if jobs are never waiting to be processed on the machine. If jobs are waiting, it may be that removing 
a setup (moving away from the optimal number of batches calculated by Dobson et al. (1987)) could 
decrease the flow-time for processing all jobs over the production horizon. We have shown how our method 
can handle jobs where batches may be commingled or where they must be segregated (e.g., Department of 
Defense jobs). We have provided guidance on how to modify the number of batches per job if identical 
batches need to be processed given resource constraints. We also have shown how to convert fractional 
batch quantities to discrete ones. Finally, we have provided a rule for deciding which job to begin 
processing, if multiple jobs are waiting to minimize total flow-time. Our new method provides the minimum 
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flow-time globally, by recognizing that local increases in flow-time may be more than offset by flow-time 
reductions for jobs processed later. Similar to the Dobson et al. (1987) article that inspired it, our research 
provides interesting insight into the multiple-product problem, and the algorithm developed is an important 
initial contribution to the problem. However, as this was an introductory study, the model defined herein 
was restricted, and leaves open many avenues for future research into the topic. This section presents 
suggestions for such research. The current model has restrictions, that when relaxed, make for a tougher 
and more interesting problem. Some of those restrictions are discussed below. 
 
Include Sequence-Dependent Changeover Times in Addition to Transfer Times - The current model 
assumes sequence-independent setup (transfer) times. In many processing environments, though, changing 
from one item to another requires the machine to undergo some configuration changes -- usually referred 
to as a changeover. With the current model restrictions, the addition of changeover times between products 
would have little impact on the system (merely extending the system wait times), and no impact on the 
solution procedure. However, if the scheduler were allowed to choose from waiting jobs, changeover times 
would affect which job to choose. For example, if two jobs were waiting and one were the same item as the 
current job, no changeover time would be required for that job. This would give that job a flow-time 
advantage over the different type job, an advantage that would have to be weighed against other 
considerations (e.g., which job arrived first, which job is larger, etc.). The impact of this relaxation would 
vary based on what other changes are made to the model. Simchi-Levi and Berman (1991) investigated 
applying a traveling salesman algorithm for this problem. 
 
Limit the Allowable Transfer Batch Size – Our model assumes that any transfer batch size is acceptable, 
allowing batch sizes as small as a single unit and as large as need be. In a practical application setting, that 
assumption probably would not hold. For example, if this were a pharmaceutical setting and the machine 
bottles pills, there probably would be a standard basic material handling platform (e.g., tray, bin, etc.) that 
could hold a specific number of bottles. Assuming the machine could automatically move that platform to 
a larger movement container (e.g., a pallet), a reasonable restriction on transfer batch size would be to allow 
batches only in multiples of the basic handling platform. In a large processing environment, even the 
ultimate movement container might limit the transfer batch size (e.g., batches no larger than a pallet). 
 
This paper examined the issue of batch flow production scheduling on a single machine with deterministic 
demand and arrivals over a finite horizon. The objective of the model is to minimize total flow-time over 
the horizon. Because the problem appeared complex in mathematical form, a linear search algorithm was 
developed to solve this problem. It was demonstrated in Proposition 1 that due to the convex nature of the 
optimal total flow-time curve, the algorithm does, indeed, provide optimal results. A general upper bound 
on the number of steps required for the algorithm to find the optimal solution was presented.  In Section 6, 
we demonstrated the robustness of our proposed method. Specifically, using a similar environment to that 
in Dobson et al. (1987), we showed a significant reduction in total flow-time over a wide range of jobs 
compared to prior results. Finally, numerous recommendations for further research were presented. 
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